Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Otolaryngol Clin North Am ; 57(2): 215-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923591

RESUMO

Asthma is frequently comorbid with chronic rhinosinusitis. First-line pharmacologic intervention for asthma includes combination-inhaled corticosteroids with a long-acting-ß-agonist, preferably formoterol. Although short-acting-ß-agonists have historically been used as sole rescue option, studies show that this approach can lead to more asthma-related exacerbations and greater mortality. Similarly, oral corticosteroids should be used sparingly due to their significant adverse effect profile. Nonpharmacological interventions for asthma include counseling on modifiable risk factors, such as smoking, physical activity, occupational exposures, and healthy diets. Management of patients with unified airway disease should incorporate a multidisciplinary team consisting of otolaryngologists and asthma specialists.


Assuntos
Antiasmáticos , Asma , Humanos , Antiasmáticos/uso terapêutico , Otorrinolaringologistas , Asma/terapia , Fumarato de Formoterol/uso terapêutico , Corticosteroides/uso terapêutico , Administração por Inalação
2.
Front Cell Neurosci ; 18: 1334244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419656

RESUMO

Introduction: Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods: We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results: Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion: Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.

3.
Nat Commun ; 13(1): 4196, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858915

RESUMO

A comprehensive characterization of epigenomic organization in the embryonic mouse forebrain will enhance our understanding of neurodevelopment and provide insight into mechanisms of neurological disease. Here we collected single-cell chromatin accessibility profiles from four distinct neurogenic regions of the embryonic mouse forebrain using single nuclei ATAC-Seq (snATAC-Seq). We identified thousands of differentially accessible peaks, many restricted to distinct progenitor cell types or brain regions. We integrated snATAC-Seq and single cell transcriptome data to characterize changes of chromatin accessibility at enhancers and promoters with associated transcript abundance. Multi-modal integration of histone modifications (CUT&Tag and CUT&RUN), promoter-enhancer interactions (Capture-C) and high-order chromatin structure (Hi-C) extended these initial observations. This dataset reveals a diverse chromatin landscape with region-specific regulatory mechanisms and genomic interactions in distinct neurogenic regions of the embryonic mouse brain and represents an extensive public resource of a 'ground truth' epigenomic landscape at this critical stage of neurogenesis.


Assuntos
Cromatina , Epigenoma , Animais , Cromatina/genética , Código das Histonas , Camundongos , Prosencéfalo , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA