Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982207

RESUMO

Subterranean blind mole rat, Spalax, has developed strategies to withstand cancer by maintaining genome stability and suppressing the inflammatory response. Spalax cells undergo senescence without the acquisition of senescence-associated secretory phenotype (SASP) in its canonical form, namely, it lacks the main inflammatory mediators. Since senescence can propagate through paracrine factors, we hypothesize that conditioned medium (CM) from senescent Spalax fibroblasts can transmit the senescent phenotype to cancer cells without inducing an inflammatory response, thereby suppressing malignant behavior. To address this issue, we investigated the effect of CMs of Spalax senescent fibroblasts on the proliferation, migration, and secretory profile in MDA-MB-231 and MCF-7 human breast cancer cells. The results suggest that Spalax CM induced senescence in cancer cells, as evidenced by increased senescence-associated beta-galactosidase (SA-ß-Gal) activity, growth suppression and overexpression of senescence-related p53/p21 genes. Contemporaneously, Spalax CM suppressed the secretion of the main inflammatory factors in cancer cells and decreased their migration. In contrast, human CM, while causing a slight increase in SA-ß-Gal activity in MDA-MB-231 cells, did not decrease proliferation, inflammatory response, and cancer cell migration. Dysregulation of IL-1α under the influence of Spalax CM, especially the decrease in the level of membrane-bound IL1-α, plays an important role in suppressing inflammatory secretion in cancer cells, which in turn leads to inhibition of cancer cell migration. Overcoming of SASP in tumor cells in response to paracrine factors of senescent microenvironment or anti-cancer drugs represents a promising senotherapeutic strategy in cancer treatment.


Assuntos
Neoplasias da Mama , Spalax , Animais , Humanos , Feminino , Ratos-Toupeira , Neoplasias da Mama/tratamento farmacológico , Secretoma , Senescência Celular , Microambiente Tumoral
2.
Anticancer Drugs ; 31(9): 885-889, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32304406

RESUMO

Heparanase is an endoglycosidase that degrades heparan sulfate side chains of heparan sulfate-proteoglycans. It liberates heparan sulfate-bound growth factors and thereby promotes blood vessel sprouting and angiogenesis. The subterranean blind mole rat, Spalax, is a wild mammal that lives most of its life in underground tunnels where it experiences sharp fluctuations in oxygen and carbon dioxide levels. We described two splice variants of heparanase from Spalax, Splice 7 and splice 36, both devoid of heparanase enzymatic activity. Splice 7 increases tumor growth, while splice 36 functions as a dominant negative to wild-type heparanase and decreases tumor growth and metastasis. Here, we describe two novel splice variants of Spalax heparanase, splice 67 and splice 612. These splice variants result in production of a shorter heparanase proteins that are similar to the wild-type native heparanase in their N-terminal but have unique C-terminals. Both splice 67 and 612 lack heparan sulfate degradation activity.


Assuntos
Glucuronidase/genética , Glucuronidase/metabolismo , Spalax/genética , Spalax/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Células HEK293 , Humanos , Isoenzimas , Transfecção
3.
BMC Genomics ; 20(1): 17, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621584

RESUMO

BACKGROUND: Spalax, the blind mole rat, developed an extraordinary cancer resistance during 40 million years of evolution in a subterranean, hypoxic, thus DNA damaging, habitat. In 50 years of Spalax research, no spontaneous cancer development has been observed. The mechanisms underlying this resistance are still not clarified. We investigated the genetic difference between Spalax and mice that might enable the Spalax relative resistance to cancer development. We compared Spalax and mice responses to a treatment with the carcinogen 3-Methylcholantrene, as a model to assess Spalax' cancer-resistance. RESULTS: We compared RNA-Seq data of untreated Spalax to Spalax with a tumor and identified a high number of differentially expressed genes. We filtered these genes by their expression in tolerant Spalax that resisted the 3MCA, and in mice, and found 25 genes with a consistent expression pattern in the samples susceptible to cancer among species. Contrasting the expressed genes in Spalax with benign granulomas to those in Spalax with malignant fibrosarcomas elucidated significant differences in several pathways, mainly related to the extracellular matrix and the immune system. We found a central cluster of ECM genes that differ greatly between conditions. Further analysis of these genes revealed potential microRNA targets. We also found higher levels of gene expression of some DNA repair pathways in Spalax than in other murines, like the majority of Fanconi Anemia pathway. CONCLUSION: The comparison of the treated with the untreated tissue revealed a regulatory complex that might give an answer how Spalax is able to restrict the tumor growth. By remodeling the extracellular matrix, the possible growth is limited, and the proliferation of cancer cells was potentially prevented. We hypothesize that this regulatory cluster plays a major role in the cancer resistance of Spalax. Furthermore, we identified 25 additional candidate genes that showed a distinct expression pattern in untreated or tolerant Spalax compared to animals that developed a developed either a benign or malignant tumor. While further study is necessary, we believe that these genes may serve as candidate markers in cancer detection.


Assuntos
Carcinogênese/efeitos dos fármacos , Resistência à Doença/genética , Neoplasias/genética , Spalax/genética , Sequência de Aminoácidos/genética , Animais , Carcinógenos/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Neoplasias/patologia , Alinhamento de Sequência , Especificidade da Espécie , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
4.
Stem Cells ; 36(10): 1630-1642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004601

RESUMO

Adipose-derived stem cells (ADSCs) are recruited by cancer cells from the adjacent tissue, and they become an integral part of the tumor microenvironment. Here, we report that ADSCs from the long-living, tumor-resistant blind mole rat, Spalax, have a low ability to migrate toward cancer cells compared with cells from its Rattus counterpart. Tracking 5-ethynyl-2'-deoxyuridine (EdU)-labeled ADSCs, introduced to tumor-bearing nude mice, toward the xenografts, we found that rat ADSCs intensively migrated and penetrated the tumors, whereas only a few Spalax ADSCs reached the tumors. Moreover, rat ADSCs, but not Spalax ADSCs, acquired endothelial-like phenotype and incorporated in the intratumoral reticular structure resembling a vasculature. Likewise, endothelial-like cells differentiated from Spalax and rat ADSCs could form capillary-like structures; however, the tube densities were higher in rat-derived cells. Using time-lapse microscopy, in vitro wound-healing, and transwell migration assays, we demonstrated the impaired motility and low polarization ability of Spalax ADSCs. To assess whether the phosphorylated status of myosin light chain (MLC) is involved in the decreased motility of Spalax ADSCs, we inhibited MLC phosphorylation by blocking of Rho-kinase (ROCK). Inhibition of ROCK resulted in the suppression of MLC phosphorylation, acquisition of actin polarization, and activation of motility and migration of Spalax ADSCs. We propose that reduced ADSCs migration to cancer and poor intratumoral angiogenesis play a role in Spalax's cancer resistance. Learning more about the molecular strategy of noncancerous cells in Spalax to resist oncogenic stimuli and maintain a nonpermissive tumor milieu may lead us to developing new cancer-preventive strategy in humans. Stem Cells 2018;36:1630-1642.


Assuntos
Tecido Adiposo/metabolismo , Neoplasias/terapia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Ratos-Toupeira , Neoplasias/patologia , Microambiente Tumoral
5.
BMC Evol Biol ; 16: 177, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590526

RESUMO

BACKGROUND: The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage. Therefore, we aimed to identify shared features among species that are adapted to hypoxic stress in the sequence of the tumor-suppressor protein p53, a master regulator of the DNA-damage response (DDR). RESULTS: We found that the sequences of p53 transactivation subdomain 2 (TAD2) and tetramerization and regulatory domains (TD and RD) are more similar among hypoxia-tolerant species than expected from phylogeny. Specific positions in these domains composed patterns that are more frequent in hypoxia-tolerant species and have proven to be good predictors of species' classification into stress-related categories. Some of these positions, which are known to be involved in the interactions between p53 and critical DDR proteins, were identified as positively selected. By 3D modeling of p53 interactions with the coactivator p300 and the DNA repair protein RPA70, we demonstrated that, compared to humans, these substitutions potentially reduce the binding of these proteins to Spalax p53. CONCLUSIONS: We conclude that extreme hypoxic conditions may have led to convergent evolutionary adaptations of the DDR via TAD2 and TD/RD domains of p53.


Assuntos
Evolução Biológica , Reparo do DNA , Spalax/genética , Proteína Supressora de Tumor p53/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Hipóxia/veterinária , Modelos Moleculares , Neoplasias/genética , Neoplasias/veterinária , Oxigênio/metabolismo , Alinhamento de Sequência , Spalax/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
6.
Endocr Res ; 39(2): 79-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24066698

RESUMO

The Israeli blind subterranean mole rat (Spalax ehrenbergi superspecies) lives in sealed underground burrows under extreme, hypoxic conditions. The four Israeli Spalax allospecies have adapted to different climates, the cool-humid (Spalax galili, 2 n = 52 chromosomes), semihumid (S. golani, 2 n = 54) north regions, warm-humid (S. carmeli, 2 n = 58) central region and the warm-dry S. judaei, 2 n = 60) southern regions. A dramatic interspecies decline in basal metabolic rate (BMR) from north to south, even after years of captivity, indicates a genetic basis for this BMR trait. We examined the possibility that the genetically-conditioned interspecies BMR difference was expressed via circulating thyroid hormone. An unexpected north to south increase in serum free thyroxine (FT4) and total 3, 5, 3'-triiodo-L-thyronine (T3) (p < 0.02) correlated negatively with previously published BMR measurements. The increases in serum FT4 and T3 were symmetrical, so that the T3:FT4 ratio - interpretable as an index of conversion of T4 to T3 in nonthyroidal tissues - did not support relative decrease in production of T3 as a contributor to BMR. Increased north-to-south serum FT4 and T3 levels also correlated negatively with hemoglobin/hematocrit. North-to-south adaptations in spalacids include decreased BMR and hematocrit/hemoglobin in the face of increasing thyroid hormone levels, arguing for independent control of hormone secretion and BMR/hematocrit/hemoglobin. But the significant inverse relationship between thyroid hormone levels and BMR/hematocrit/hemoglobin is also consistent with a degree of cellular resistance to thyroid hormone action that protects against hormone-induced increase in oxygen consumption in a hostile, hypoxic environment.


Assuntos
Metabolismo Basal/fisiologia , Consumo de Oxigênio/fisiologia , Spalax/metabolismo , Glândula Tireoide/metabolismo , Animais , Meio Ambiente , Feminino , Hematócrito , Hemoglobinas/metabolismo , Umidade , Hipóxia/metabolismo , Israel , Masculino , Camundongos Endogâmicos C57BL , Osmorregulação/fisiologia , Estações do Ano , Especificidade da Espécie , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
7.
BMC Biol ; 11: 91, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23937926

RESUMO

BACKGROUND: Subterranean blind mole rats (Spalax) are hypoxia tolerant (down to 3% O2), long lived (>20 years) rodents showing no clear signs of aging or aging related disorders. In 50 years of Spalax research, spontaneous tumors have never been recorded among thousands of individuals. Here we addressed the questions of (1) whether Spalax is resistant to chemically-induced tumorigenesis, and (2) whether normal fibroblasts isolated from Spalax possess tumor-suppressive activity. RESULTS: Treating animals with 3-Methylcholantrene (3MCA) and 7,12-Dimethylbenz(a) anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA), two potent carcinogens, confirmed Spalax high resistance to chemically induced cancers. While all mice and rats developed the expected tumors following treatment with both carcinogens, among Spalax no tumors were observed after DMBA/TPA treatment, while 3MCA induced benign fibroblastic proliferation in 2 Spalax individuals out of12, and only a single animal from the advanced age group developed malignancy 18 months post-treatment. The remaining animals are still healthy 30 months post-treatment. In vitro experiments showed an extraordinary ability of normal Spalax cultured fibroblasts to restrict malignant behavior in a broad spectrum of human-derived and in newly isolated Spalax 3MCA-induced cancer cell lines. Growth of cancer cells was inhibited by either direct interaction with Spalax fibroblasts or with soluble factors released into culture media and soft agar. This was accompanied by decreased cancer cell viability, reduced colony formation in soft agar, disturbed cell cycle progression, chromatin condensation and mitochondrial fragmentation. Cells from another cancer resistant subterranean mammal, the naked mole rat, were also tested for direct effect on cancer cells and, similar to Spalax, demonstrated anti-cancer activity. No effect on cancer cells was observed using fibroblasts from mouse, rat or Acomys. Spalax fibroblast conditioned media had no effect on proliferation of noncancerous cells. CONCLUSIONS: This report provides pioneering evidence that Spalax is not only resistant to spontaneous cancer but also to experimentally induced cancer, and shows the unique ability of Spalax normal fibroblasts to inhibit growth and kill cancer cells, but not normal cells, either through direct fibroblast-cancer cell interaction or via soluble factors. Obviously, along with adaptation to hypoxia, Spalax has evolved efficient anti-cancer mechanisms yet to be elucidated. Exploring the molecular mechanisms allowing Spalax to survive in extreme environments and to escape cancer as well as to kill homologous and heterologous cancer cells may hold the key for understanding the molecular nature of host resistance to cancer and identify new anti-cancer strategies for treating humans.


Assuntos
Resistência à Doença/imunologia , Neoplasias/imunologia , Spalax/imunologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinógenos/toxicidade , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrossarcoma/patologia , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias/patologia , Ratos , Acetato de Tetradecanoilforbol , Ensaio Tumoral de Célula-Tronco
8.
Genes (Basel) ; 15(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39202399

RESUMO

The subterranean blind mole rat, Spalax, has evolved significantly over 47 million years to thrive in its underground habitat. A key enzyme in this adaptation is heparanase, which degrades heparan sulfate (HS) in the extracellular matrix (ECM), facilitating angiogenesis and releasing growth factors for endothelial cells. Spalax heparanase has various splice variants influencing tumor growth and metastasis differently. We report a novel splice variant from a hypoxia-exposed kidney sample resulting from exon 12 skipping. This variant maintains the translation frame but lacks enzymatic activity, offering insights into Spalax's unique adaptations.


Assuntos
Processamento Alternativo , Éxons , Glucuronidase , Spalax , Glucuronidase/genética , Glucuronidase/metabolismo , Animais , Éxons/genética , Spalax/genética , Heparitina Sulfato/metabolismo , Humanos
9.
Proc Natl Acad Sci U S A ; 107(50): 21570-5, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21115824

RESUMO

The subterranean mole rat Spalax is an excellent model for studying adaptation of a mammal toward chronic environmental hypoxia. Neuroglobin (Ngb) and cytoglobin (Cygb) are O(2)-binding respiratory proteins and thus candidates for being involved in molecular hypoxia adaptations of Spalax. Ngb is expressed primarily in vertebrate nerves, whereas Cygb is found in extracellular matrix-producing cells and in some neurons. The physiological functions of both proteins are not fully understood but discussed with regard to O(2) supply, the detoxification of reactive oxygen or nitrogen species, and apoptosis protection. Spalax Ngb and Cygb coding sequences are strongly conserved. However, mRNA and protein levels of Ngb in Spalax brain are 3-fold higher than in Rattus norvegicus under normoxia. Importantly, Spalax expresses Ngb in neurons and additionally in glia, whereas in hypoxia-sensitive rodents Ngb expression is limited to neurons. Hypoxia causes an approximately 2-fold down-regulation of Ngb mRNA in brain of rat and mole rat. A parallel regulatory response was found for myoglobin (Mb) in Spalax and rat muscle, suggesting similar functions of Mb and Ngb. Cygb also revealed an augmented normoxic expression in Spalax vs. rat brain, but not in heart or liver, indicating distinct tissue-specific functions. Hypoxia induced Cygb transcription in heart and liver of both mammals, with the most prominent mRNA up-regulation (12-fold) in Spalax heart. Our data suggest that tissue globins contribute to the remarkable tolerance of Spalax toward environmental hypoxia. This is consistent with the proposed cytoprotective effect of Ngb and Cygb under pathological hypoxic/ischemic conditions in mammals.


Assuntos
Adaptação Fisiológica , Globinas/metabolismo , Hipóxia/metabolismo , Mioglobina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Spalax/fisiologia , Animais , Sequência de Bases , Citoglobina , Regulação da Expressão Gênica , Globinas/genética , Humanos , Mioglobina/genética , Proteínas do Tecido Nervoso/genética , Neuroglobina , Ratos , Ratos Sprague-Dawley , Análise de Sequência de DNA
10.
BMC Genomics ; 13: 615, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23148642

RESUMO

BACKGROUND: The development of complex responses to hypoxia has played a key role in the evolution of mammals, as inadequate response to this condition is frequently associated with cardiovascular diseases, developmental disorders, and cancers. Though numerous studies have used mice and rats in order to explore mechanisms that contribute to hypoxia tolerance, these studies are limited due to the high sensitivity of most rodents to severe hypoxia. The blind subterranean mole rat Spalax is a hypoxia tolerant rodent, which exhibits unique longevity and therefore has invaluable potential in hypoxia and cancer research. RESULTS: Using microarrays, transcript abundance was measured in brain and muscle tissues from Spalax and rat individuals exposed to acute and chronic hypoxia for varying durations. We found that Spalax global gene expression response to hypoxia differs from that of rat and is characterized by the activation of functional groups of genes that have not been strongly associated with the response to hypoxia in hypoxia sensitive mammals. Using functional enrichment analysis of Spalax hypoxia induced genes we found highly significant overrepresentation of groups of genes involved in anti apoptosis, cancer, embryonic/sexual development, epidermal growth factor receptor binding, coordinated suppression and activation of distinct groups of transcription factors and membrane receptors, in addition to angiogenic related processes. We also detected hypoxia induced increases of different critical Spalax hub gene transcripts, including antiangiogenic genes associated with cancer tolerance in Down syndrome human individuals. CONCLUSIONS: This is the most comprehensive study of Spalax large scale gene expression response to hypoxia to date, and the first to use custom Spalax microarrays. Our work presents novel patterns that may underlie mechanisms with critical importance to the evolution of hypoxia tolerance, with special relevance to medical research.


Assuntos
Encéfalo/irrigação sanguínea , Regulação da Expressão Gênica , Hipóxia/genética , Músculos/irrigação sanguínea , RNA Mensageiro/genética , Spalax/genética , Transcriptoma , Animais , Apoptose/genética , Evolução Biológica , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Hipóxia/metabolismo , Longevidade , Músculos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neovascularização Fisiológica , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Ratos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Spalax/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 303(11): H1332-43, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22982781

RESUMO

Oxygen-induced regulation of Na,K-ATPase was studied in rat myocardium. In rat heart, Na,K-ATPase responded to hypoxia with a dose-dependent inhibition in hydrolytic activity. Inhibition of Na,K-ATPase in hypoxic rat heart was associated with decrease in nitric oxide (NO) production and progressive oxidative stress. Accumulation of oxidized glutathione (GSSG) and decrease in NO availability in hypoxic rat heart were followed by a decrease in S-nitrosylation and upregulation of S-glutathionylation of the catalytic α-subunit of the Na,K-ATPase. Induction of S-glutathionylation of the α-subunit by treatment of tissue homogenate with GSSG resulted in complete inhibition of the enzyme in rat a myocardial tissue homogenate. Inhibitory effect of GSSG in rat sarcolemma could be significantly decreased upon activation of NO synthases. We have further tested whether oxidative stress and suppression of the Na,K-ATPase activity are observed in hypoxic heart of two subterranean hypoxia-tolerant blind mole species (Spalax galili and Spalax judaei). In both hypoxia-tolerant Spalax species activity of the enzyme and tissue redox state were maintained under hypoxic conditions. However, localization of cysteines within the catalytic subunit of the Na,K-ATPase was preserved and induction of S-glutathionylation by GSSG in tissue homogenate inhibited the Spalax ATPase as efficiently as in rat heart. The obtained data indicate that oxygen-induced regulation of the Na,K-ATPase in the heart is mediated by a switch between S-glutathionylation and S-nitrosylation of the regulatory thiol groups localized at the catalytic subunit of the enzyme.


Assuntos
Glutationa/metabolismo , Hipóxia/metabolismo , Miocárdio/metabolismo , Nitritos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Cisteína/metabolismo , Técnicas In Vitro , Masculino , Modelos Animais , Oxirredução , Oxigênio/metabolismo , Fosforilação , Ratos , Ratos Wistar , Sarcolema/metabolismo , Spalax
12.
Proc Natl Acad Sci U S A ; 106(7): 2253-8, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164514

RESUMO

Heparanase is an endoglycosidase that degrades heparan sulfate (HS) at the cell surface and in the extracellular matrix. Heparanase is expressed mainly by cancer cells, and its expression is correlated with increased tumor aggressiveness, metastasis, and angiogenesis. Here, we report the cloning of a unique splice variant (splice 36) of heparanase from the subterranean blind mole rat (Spalax). This splice variant results from skipping part of exon 3, exons 4 and 5, and part of exon 6 and functions as a dominant negative to the wild-type enzyme. It inhibits HS degradation, suppresses glioma tumor growth, and decreases experimental B16-BL6 lung colonization in a mouse model. Intriguingly, Spalax splice variant 7 of heparanase (which results from skipping of exon 7) is devoid of enzymatic activity, but unlike splice 36 it enhances tumor growth. Our results demonstrate that alternative splicing of heparanase regulates its enzymatic activity and might adapt the heparanase function to the fluctuating normoxic-hypoxic subterranean environment that Spalax experiences. Development of anticancer drugs designed to suppress tumor growth, angiogenesis, and metastasis is a major challenge, of which heparanase inhibition is a promising approach. We anticipate that the heparanase splicing model, evolved during 40 million years of Spalacid adaptation to underground life, would pave the way for the development of heparanase-based therapeutic modalities directed against angiogenesis, tumor growth, and metastasis.


Assuntos
Matriz Extracelular/metabolismo , Glucuronidase/metabolismo , Melanoma Experimental/tratamento farmacológico , Processamento Alternativo , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Linhagem Celular , Glicosídeo Hidrolases/metabolismo , Humanos , Hipóxia , Melanoma Experimental/patologia , Camundongos , Dados de Sequência Molecular , Metástase Neoplásica , Ratos , Spalax
13.
Artigo em Inglês | MEDLINE | ID: mdl-22230185

RESUMO

The blind subterranean mole rat (Spalax ehrenbergi) exhibits a relatively long life span, which is attributed to an efficient antioxidant defense affording protection against accumulation of oxidative modifications of proteins. Methionine residues can be oxidized to methionine sulfoxide (MetO) and then enzymatically reduced by the methionine sulfoxide reductase (Msr) system. In the current study we have isolated the cDNA sequences of the Spalax Msr genes as well as 23 additional selenoproteins and monitored the activities of Msr enzymes in liver and brain of rat (Rattus norvegicus), Spalax galili, and Spalax judaei under normoxia, hypoxia, and hyperoxia. Under normoxia, the Msr activity was lower in S. galili in comparison to S. judaei and R. norvegicus especially in the brain. The pattern of Msr activity of the three species was similar throughout the tested conditions. However, exposure of the animals to hypoxia caused a significant enhancement of Msr activity, especially in S. galili. Hyperoxic exposure showed a highly significant induction of Msr activity compared with normoxic conditions for R. norvegicus and S. galili brain. It was concluded that among all species examined, S. galili appears to be more responsive to oxygen tension changes and that the Msr system is upregulated mainly by severe hypoxia.


Assuntos
Encéfalo/enzimologia , Hiperóxia/enzimologia , Hipóxia/enzimologia , Fígado/enzimologia , Metionina Sulfóxido Redutases/metabolismo , Metionina/análogos & derivados , Oxigênio/metabolismo , Spalax/metabolismo , Animais , Sequência de Bases , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Hiperóxia/genética , Hipóxia/genética , Masculino , Metionina/metabolismo , Metionina Sulfóxido Redutases/genética , Anotação de Sequência Molecular , Oxirredução , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica
14.
Proc Natl Acad Sci U S A ; 105(50): 19986-91, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19064935

RESUMO

Although many genes have been shown to play essential roles in learning and memory, the precise molecular and cellular mechanisms underlying these processes remain to be fully elucidated. Here, we present the molecular and behavioral characterization of the Drosophila memory mutant nemy. We provide multiple lines of evidence to show that nemy arises from a mutation in a Drosophila homologue of cytochrome B561. nemy is predominantly expressed in neuroendocrine neurons in the larval brain, and in mushroom bodies and antennal lobes in the adult brain, where it is partially coexpressed with peptidyl alpha-hydroxylating monooxygenase (PHM), an enzyme required for peptide amidation. Cytochrome b561 was found to be a requisite cofactor for PHM activity and we found that the levels of amidated peptides were reduced in nemy mutants. Moreover, we found that knockdown of PHM gave rise to defects in memory retention. Altogether, the data are consistent with a model whereby cytochrome B561-mediated electron transport plays a role in memory formation by regulating intravesicular PHM activity and the formation of amidated neuropeptides.


Assuntos
Grupo dos Citocromos b/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Aprendizagem , Memória , Animais , Animais Geneticamente Modificados , Encéfalo/enzimologia , Clonagem Molecular , Grupo dos Citocromos b/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Mutação
15.
J Mol Evol ; 70(1): 1-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19967343

RESUMO

The muscle ankyrin repeat proteins (MARPs), also known as muscle stretch proteins, are members of a conserved family of genes known to be induced under stress conditions. The three primary members, cardiac ankyrin repeat protein (CARP), Ankyrin Repeat Domain 2 (ARPP), and diabetes-related ankyrin repeat protein (DARP) are expressed in cardiac and skeletal muscle, binding to the giant protein titin. In addition, both CARP and ARPP are proposed to have regulatory functions, shuttling to the nucleus and serving as a liaison between mechanical stress and the transcriptional response. In mouse and human models, CARP is induced during wound healing, denervation, neurogenesis, and angiogenesis; ARPP during an immobilized stretch; DARP is up-regulated in type 2 diabetes, as well as brown adipose tissue, suggesting a role in energy metabolism. Most animal models have focused on stretch response stress; however, little is known about the response of MARPs to hypoxic stress. The blind subterranean mole rat is a model for hypoxia tolerance with the ability to survive extremely hypoxic and hypercapnic underground conditions. Following observations that CARP is differentially expressed in the Spalax muscle in response to hypoxia, we have sequenced the Spalax orthologs of the MARP proteins and profiled expression patterns under varying levels of hypoxic stress among two Spalax species and Rattus. Results show expression patterns highly correlated to the degree of hypoxic tolerance among the three species. Understanding the differences in MARP expression further elucidates mechanisms of hypoxia tolerance with relevance to human ischemic disease.


Assuntos
Adaptação Fisiológica/genética , Repetição de Anquirina , Cegueira , Regulação da Expressão Gênica , Hipóxia/genética , Proteínas Musculares/genética , Spalax/genética , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Fases de Leitura Aberta/genética , Oxigênio/farmacologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Alinhamento de Sequência , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Tempo
16.
FASEB J ; 23(7): 2327-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19255257

RESUMO

The blind subterranean mole rat of the Spalax ehrenbergi superspecies is an excellent animal model for hypoxic tolerance. Unique physiological, functional, and gene structure changes allow Spalax species to survive lower oxygen levels than most terrestrial animals. BNIP3, an HIF-1 dependent hypoxia-response gene, has a proapoptotic function; however, expression is suppressed in many types of cancers. Under hypoxic conditions, BNIP3 also functions as a mediator of mitochondrial autophagy, a survival adaptation to control ROS production and DNA damage. Using real-time PCR and Western blotting, we investigated the impact of hypoxia on BNIP3 expression and mitophagy, in the skeletal muscle and heart, of the Rattus and two Spalax species. BNIP3 transcript, as well as protein levels, increased to significantly higher levels under hypoxia in Rattus tissues, with smaller changes in Spalax. Mitophagy was correlated with BNIP3 expression in the heart with an inverse correlation to hypoxia tolerance. A dense network of vessels in Spalax muscle may offer protection from physiological hypoxia, while the response in Rattus reflects the increase of hypoxic stress. In Spalax tissues, as in many cancers, BNIP3 expression and mitophagy are significantly less affected by hypoxia. Similar mechanisms, beneficial to organisms adapted to stressful environments, may also confer malignant cells with survival features. Understanding the molecular basis of such adaptations may enhance development of new therapeutic modalities.


Assuntos
Autofagia/genética , Hipóxia/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Animais , Hipóxia/metabolismo , Proteínas Mitocondriais , Ratos-Toupeira , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Ratos , Especificidade da Espécie
17.
FASEB J ; 22(1): 105-12, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17726089

RESUMO

Vascular endothelial growth factor receptor (VEGF) plays a critical role in blood vessel formation and affects nerve growth and survival. VEGF receptor 2 (Flk1) functions as the major signal transducer of angiogenesis, mediating VEGF induction of endothelial tubulogenesis. We have cloned and analyzed expression of Flk1 in the blind subterranean mole rat Spalax ehrenbergi. Spalax experience abrupt and sharp changes in oxygen supply in their sealed underground niche and, hence, are genetically adapted to hypoxia and serve as a unique, natural mammalian model organism for hypoxia tolerance. Spalax Flk1 is relatively conserved at the nucleic acid and amino acid level compared to human, mouse, and rat orthologs. Reverse transcription-quantitative polymerase chain reaction was used to analyze Flk1 expression in muscle and brain of animals exposed to ambient or variant hypoxic oxygen levels at multiple stages of development. Transcript levels were compared with those obtained from Rattus, a primary model for human physiology. Our findings demonstrate that under normoxic conditions Flk1 patterns of expression correlate well with our previous investigations of VEGF expression. Exposure to hypoxic conditions resulted in divergent patterns of Flk1 expression between Spalax and Rattus and between muscle and brain. It appears that the regulatory mechanisms differentiating expression between the species and between tissues are most likely unique, suggesting that Flk1 expression may be regulated by multiple processes, including both angiogenesis and neurogenesis.


Assuntos
Adaptação Fisiológica/genética , Hipóxia/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA Complementar , Ratos-Toupeira , Fases de Leitura Aberta , RNA Mensageiro/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
18.
Dev Cell ; 45(6): 726-737.e3, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29920277

RESUMO

Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects.


Assuntos
Tamanho do Órgão/fisiologia , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Células Acinares/fisiologia , Animais , Crescimento Celular , Tamanho Celular , Humanos , Hipertrofia , Células Secretoras de Insulina/fisiologia , Camundongos , Pâncreas Exócrino/fisiologia
19.
Curr Biol ; 12(22): 1919-22, 2002 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-12445384

RESUMO

The subterranean mole rat Spalax ehrenbergi superspecies represents an extreme example of adaptive visual and neuronal reorganization. Despite its total visual blindness, its daily activity rhythm is entrainable to light-dark cycles, indicating that it can confer light information to the clock. Although most individuals are active during the light phase under laboratory conditions (diurnal animals), some individuals switch their activity period to the night (nocturnal animals). Similar to other rodents, the Spalax circadian clock is driven by a set of clock genes, including the period (sPer) genes. In this work, we show that diurnal mole rats express the Per genes sPer1 and sPer2 with a peak during the light period. Light can synchronize sPer gene expression to an altered light-dark cycle and thereby reset the clock. In contrast, nocturnal Spalax express sPer2 in the dark period and sPer1 in a biphasic manner, with a light-dependent maximum during the day and a second light-independent maximum during the night. Although sPer1 expression remains light inducible, this is not sufficient to reset the molecular clockwork. Hence, the strict coupling of light, Per expression, and the circadian clock is lost. This indicates that Spalax can dissociate the light-driven resetting pathway from the central clock oscillator.


Assuntos
Ritmo Circadiano/fisiologia , Ratos-Toupeira/fisiologia , Animais , Cegueira/fisiopatologia , Escuridão , Luz , Atividade Motora/fisiologia , Periodicidade
20.
Sci Rep ; 7(1): 14348, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084988

RESUMO

The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxia-sensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat's phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.


Assuntos
Hipóxia/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/fisiologia , Adaptação Fisiológica/genética , Envelhecimento/genética , Animais , Reparo do DNA , Tolerância a Medicamentos/fisiologia , Metabolismo Energético/fisiologia , Hipóxia/fisiopatologia , Tolerância Imunológica/fisiologia , Fígado/metabolismo , Longevidade/genética , Longevidade/fisiologia , Ratos , Análise de Sequência de RNA , Spalax/genética , Especificidade da Espécie , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA