Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 161: 105546, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742878

RESUMO

Febrile seizures (FS) are common, affecting 2-5% of children between the ages of 3 months and 6 years. Complex FS occur in 10% of patients with FS and are strongly associated with mesial temporal lobe epilepsy. Current research suggests that predisposing factors, such as genetic and anatomic abnormalities, may be necessary for complex FS to translate to mesial temporal lobe epilepsy. Sex hormones are known to influence seizure susceptibility and epileptogenesis, but whether sex-specific effects of early life stress play a role in epileptogenesis is unclear. Here, we investigate sex differences in the activity of the hypothalamic-pituitary-adrenal (HPA) axis following chronic stress and the underlying contributions of gonadal hormones to the susceptibility of hyperthermia-induced seizures (HS) in rat pups. Chronic stress consisted of daily injections of 40 mg/kg of corticosterone (CORT) subcutaneously from postnatal day (P) 1 to P9 in male and female rat pups followed by HS at P10. Body mass, plasma CORT levels, temperature threshold to HS, seizure characteristics, and electroencephalographic in vivo recordings were compared between CORT- and vehicle (VEH)-injected littermates during and after HS at P10. In juvenile rats (P18-P22), in vitro CA1 pyramidal cell recordings were recorded in males to investigate excitatory and inhibitory neuronal circuits. Results show that daily CORT injections increased basal plasma CORT levels before HS and significantly reduced weight gain and body temperature threshold of HS in both males and females. CORT also significantly lowered the generalized convulsions (GC) latency while increasing recovery time and the number of electrographic seizures (>10s), which had longer duration. Furthermore, sex-specific differences were found in response to chronic CORT injections. Compared to females, male pups had increased basal plasma CORT levels after HS, longer recovery time and a higher number of electrographic seizures (>10s), which also had longer duration. Sex-specific differences were also found at baseline conditions with lower latency to generalized convulsions and longer duration of electrographic seizures in males but not in females. In juvenile male rats, the amplitude of evoked excitatory postsynaptic potentials, as well as the amplitude of inhibitory postsynaptic currents, were significantly greater in CORT rats when compared to VEH littermates. These findings not only validate CORT injections as a stress model, but also show a sex difference in baseline conditions as well as a response to chronic CORT and an impact on seizure susceptibility, supporting a potential link between sustained early-life stress and complex FS. Overall, these effects also indicate a putatively less severe phenotype in female than male pups. Ultimately, studies investigating the biological underpinnings of sex differences as a determining factor in mental and neurologic problems are necessary to develop better diagnostic, preventative, and therapeutic approaches for all patients regardless of their sex.


Assuntos
Hipertermia Induzida , Convulsões Febris , Animais , Corticosterona , Feminino , Humanos , Hipertermia Induzida/efeitos adversos , Sistema Hipotálamo-Hipofisário , Masculino , Ratos , Convulsões/etiologia , Convulsões Febris/etiologia , Caracteres Sexuais
2.
Cereb Cortex ; 30(1): 256-268, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31038696

RESUMO

Methyl-CpG-binding protein 2 (MeCP2) mutations are the primary cause of Rett syndrome, a severe neurodevelopmental disorder. Cortical parvalbumin GABAergic interneurons (PV) make exuberant somatic connections onto pyramidal cells in the visual cortex of Mecp2-deficient mice, which contributes to silencing neuronal cortical circuits. This phenotype can be rescued independently of Mecp2 by environmental, pharmacological, and genetic manipulation. It remains unknown how Mecp2 mutation can result in abnormal inhibitory circuit refinement. In the present manuscript, we examined the development of GABAergic circuits in the primary visual cortex of Mecp2-deficient mice. We identified that PV circuits were the only GABAergic interneurons to be upregulated, while other interneurons were downregulated. Acceleration of PV cell maturation was accompanied by increased PV cells engulfment by perineuronal nets (PNNs) and by an increase of PV cellular and PNN structural complexity. Interestingly, selective deletion of Mecp2 from PV cells was sufficient to drive increased structure complexity of PNN. Moreover, the accelerated PV and PNN maturation was recapitulated in organotypic cultures. Our results identify a specific timeline of disruption of GABAergic circuits in the absence of Mecp2, indicating a possible cell-autonomous role of MeCP2 in the formation of PV cellular arbors and PNN structures in the visual cortex.


Assuntos
Neurônios GABAérgicos/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Parvalbuminas/fisiologia , Córtex Visual/crescimento & desenvolvimento , Animais , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Córtex Visual/citologia
3.
J Neurosci ; 39(23): 4489-4510, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936240

RESUMO

By virtue of their extensive axonal arborization and perisomatic synaptic targeting, cortical inhibitory parvalbumin (PV) cells strongly regulate principal cell output and plasticity and modulate experience-dependent refinement of cortical circuits during development. An interesting aspect of PV cell connectivity is its prolonged maturation time course, which is completed only by end of adolescence. The p75 neurotrophin receptor (p75NTR) regulates numerous cellular functions; however, its role on cortical circuit development and plasticity remains elusive, mainly because localizing p75NTR expression with cellular and temporal resolution has been challenging. By using RNAscope and a modified version of the proximity ligation assay, we found that p75NTR expression in PV cells decreases between the second and fourth postnatal week, at a time when PV cell synapse numbers increase dramatically. Conditional knockout of p75NTR in single PV neurons in vitro and in PV cell networks in vivo causes precocious formation of PV cell perisomatic innervation and perineural nets around PV cell somata, therefore suggesting that p75NTR expression modulates the timing of maturation of PV cell connectivity in the adolescent cortex. Remarkably, we found that PV cells still express p75NTR in adult mouse cortex of both sexes and that its activation is sufficient to destabilize PV cell connectivity and to restore cortical plasticity following monocular deprivation in vivo Together, our results show that p75NTR activation dynamically regulates PV cell connectivity, and represent a novel tool to foster brain plasticity in adults.SIGNIFICANCE STATEMENT In the cortex, inhibitory, GABA-releasing neurons control the output and plasticity of excitatory neurons. Within this diverse group, parvalbumin-expressing (PV) cells form the larger inhibitory system. PV cell connectivity develops slowly, reaching maturity only at the end of adolescence; however, the mechanisms controlling the timing of its maturation are not well understood. We discovered that the expression of the neurotrophin receptor p75NTR in PV cells inhibits the maturation of their connectivity in a cell-autonomous fashion, both in vitro and in vivo, and that p75NTR activation in adult PV cells promotes their remodeling and restores cortical plasticity. These results reveal a new p75NTR function in the regulation of the time course of PV cell maturation and in limiting cortical plasticity.


Assuntos
Envelhecimento/fisiologia , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Maturidade Sexual/fisiologia , Córtex Visual/crescimento & desenvolvimento , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Conectoma , Potenciais Evocados Visuais , Feminino , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/química , Interneurônios/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Parvalbuminas/análise , Precursores de Proteínas/farmacologia , Distribuição Aleatória , Receptores de Fator de Crescimento Neural/biossíntese , Receptores de Fator de Crescimento Neural/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Sinapses/fisiologia , Visão Monocular/fisiologia , Córtex Visual/citologia , Córtex Visual/metabolismo
4.
Neurobiol Dis ; 91: 10-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26875662

RESUMO

Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations.


Assuntos
Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Convulsões Febris/patologia , Simportadores/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Suscetibilidade a Doenças/metabolismo , Epilepsia/fisiopatologia , Transtornos da Memória/metabolismo , Neurogênese/fisiologia , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Convulsões Febris/metabolismo , Convulsões Febris/fisiopatologia , Cotransportadores de K e Cl-
5.
Neurobiol Dis ; 43(2): 312-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21406232

RESUMO

Clinical evidence suggests that febrile status epilepticus (SE) in children can lead to acute hippocampal injury and subsequent temporal lobe epilepsy. The contribution of febrile SE to the mechanisms underlying temporal lobe epilepsy are however poorly understood. A rat model of temporal lobe epilepsy following hyperthermic SE was previously established in our laboratory, wherein a focal cortical lesion induced at postnatal day 1 (P1), followed by a hyperthermic SE (more than 30 min) at P10, leads to hippocampal atrophy at P22 (dual pathology model) and spontaneous recurrent seizures (SRS) with mild visuospatial memory deficits in adult rats. The goal of this study was to identify the long term electrophysiological, anatomical and molecular changes in this model. Following hyperthermic SE, all cortically lesioned pups developed progressive SRS as adults, characterized by the onset of highly rhythmic activity in the hippocampus. A reduction of hippocampal volume on the side of the lesion preceded the SRS and was associated with a loss of hippocampal neurons, a marked decrease in pyramidal cell spine density, an increase in the hippocampal levels of NMDA receptor NR2A subunit, but no significant change in GABA receptors. These findings suggest that febrile SE in the abnormal brain leads to hippocampal injury that is followed by progressive network reorganization and molecular changes that contribute to the epileptogenesis as well as the observed memory deficits.


Assuntos
Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/patologia , Convulsões Febris/patologia , Doença Aguda , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Ratos , Ratos Sprague-Dawley , Convulsões Febris/complicações , Convulsões Febris/fisiopatologia , Fatores de Tempo
6.
Eur J Neurosci ; 31(7): 1252-60, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20345922

RESUMO

Febrile seizures are the most common types of seizure in children, and are generally considered to be benign. However, febrile seizures in children with dysgenesis have been associated with the development of temporal lobe epilepsy. We have previously shown in a rat model of dysgenesis (cortical freeze lesion) and hyperthermia-induced seizures that 86% of these animals developed recurrent seizures in adulthood. The cellular changes underlying the increased risk of epileptogenesis in this model are not known. Using whole cell patch-clamp recordings from CA1 hippocampal pyramidal cells, we found a more pronounced increase in excitability in rats with both hyperthermic seizures and dysgenesis than in rats with hyperthermic seizures alone or dysgenesis alone. The change was found to be secondary to an increase in N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSCs). Inversely, hyperpolarization-activated cation current was more pronounced in naïve rats with hyperthermic seizures than in rats with dysgenesis and hyperthermic seizures or with dysgenesis alone. The increase in GABAA-mediated inhibition observed was comparable in rats with or without dysgenesis after hyperthermic seizures, whereas no changes were observed in rats with dysgenesis alone. Our work indicates that in this two-hit model, changes in NMDA receptor-mediated EPSCs may facilitate epileptogenesis following febrile seizures. Changes in the hyperpolarization-activated cation currents may represent a protective reaction and act by damping the NMDA receptor-mediated hyperexcitability, rather than converting inhibition into excitation. These findings provide a new hypothesis of cellular changes following hyperthermic seizures in predisposed individuals, and may help in the design of therapeutic strategies to prevent epileptogenesis following prolonged febrile seizures.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/fisiopatologia , N-Metilaspartato/farmacologia , Canais de Potássio/metabolismo , Convulsões Febris , Ácido gama-Aminobutírico/farmacologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Biofísica/métodos , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Hipocampo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Hipertermia Induzida/métodos , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiopatologia , Ratos , Ratos Sprague-Dawley , Convulsões Febris/etiologia , Convulsões Febris/patologia , Convulsões Febris/fisiopatologia , Estatísticas não Paramétricas , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
7.
Prog Neurobiol ; 162: 1-16, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29197650

RESUMO

The K+-Cl- co-transporter KCC2 is a neuron-specific, Cl- extruder that uses K+ gradient for maintaining low intracellular [Cl-]. It is indeed well established that sustaining an outwardly-directed electrochemical Cl- gradient across the neuronal membrane is fundamental for a proper function of postsynaptic GABAA receptor signaling. In particular, studies in the last two decades have shown that KCC2 activity is important to maintain a hyperpolarizing GABAergic neurotransmission. Conversely, low KCC2 activity should lead to depolarizing, and under specific conditions, excitatory GABAergic transmission. Not surprisingly given the critical role of KCC2 in regulating the inhibitory drive, alterations in its expression levels and activity are linked with epilepsy. Here, we will first summarize data regarding the role of KCC2 in epileptiform synchronization. Next, we will review evidence indicating that KCC2 expression and function are altered in chronic epileptic disorders, both in the developing and adult brain. We will also go through recent findings regarding the molecular mechanisms underlying the changes in KCC2 activity that occur following seizures. Finally, we will consider the modulation of KCC2 function as a potential, novel therapeutic target for the treatment of epileptic disorders.


Assuntos
Sincronização de Fases em Eletroencefalografia/fisiologia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Simportadores/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA