Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23439, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416461

RESUMO

Reactive oxygen species (ROS) are among the most severe types of cellular stressors with the ability to damage essential cellular biomolecules. Excess levels of ROS are correlated with multiple pathophysiological conditions including neurodegeneration, diabetes, atherosclerosis, and cancer. Failure to regulate the severely imbalanced levels of ROS can ultimately lead to cell death, highlighting the importance of investigating the molecular mechanisms involved in the detoxification procedures that counteract the effects of these compounds in living organisms. One of the most abundant forms of ROS is H2 O2 , mainly produced by the electron transport chain in the mitochondria. Numerous genes have been identified as essential to the process of cellular detoxification. Yeast YAP1, which is homologous to mammalian AP-1 type transcriptional factors, has a key role in oxidative detoxification by upregulating the expression of antioxidant genes in yeast. The current study reveals novel functions for COX5A and NPR3 in H2 O2 -induced stress by demonstrating that their deletions result in a sensitive phenotype. Our follow-up investigations indicate that COX5A and NPR3 regulate the expression of YAP1 through an alternative mode of translation initiation. These novel gene functions expand our understanding of the regulation of gene expression and defense mechanism of yeast against oxidative stress.


Assuntos
Aterosclerose , Proteínas de Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Antioxidantes , Mamíferos , Fatores de Transcrição/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 299(6): 104749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100284

RESUMO

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Assuntos
Antivirais , COVID-19 , Mpox , Vacínia , Animais , Camundongos , Antivirais/farmacologia , Mpox/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Vacínia/tratamento farmacológico , Vaccinia virus/efeitos dos fármacos
3.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526097

RESUMO

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Imidazóis , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Antivirais/farmacologia , Imidazóis/farmacologia , Camundongos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Estados Unidos , United States Food and Drug Administration
4.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687845

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Assuntos
COVID-19 , Vacinas , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Linfócitos T
5.
Proc Natl Acad Sci U S A ; 117(48): 30520-30530, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203680

RESUMO

The Hippo pathway is an evolutionarily conserved regulator of organ growth and tumorigenesis. In Drosophila, oncogenic RasV12 cooperates with loss-of-cell polarity to promote Hippo pathway-dependent tumor growth. To identify additional factors that modulate this signaling, we performed a genetic screen utilizing the Drosophila RasV12/lgl-/- in vivo tumor model and identified Rox8, a RNA-binding protein (RBP), as a positive regulator of the Hippo pathway. We found that Rox8 overexpression suppresses whereas Rox8 depletion potentiates Hippo-dependent tissue overgrowth, accompanied by altered Yki protein level and target gene expression. Mechanistically, Rox8 directly binds to a target site located in the yki 3' UTR, recruits and stabilizes the targeting of miR-8-loaded RISC, which accelerates the decay of yki messenger RNA (mRNA). Moreover, TIAR, the human ortholog of Rox8, is able to promote the degradation of yki mRNA when introduced into Drosophila and destabilizes YAP mRNA in human cells. Thus, our study provides in vivo evidence that the Hippo pathway is posttranscriptionally regulated by the collaborative action of RBP and microRNA (miRNA), which may provide an approach for modulating Hippo pathway-mediated tumorigenesis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , MicroRNAs/genética , Proteínas Nucleares/genética , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Transativadores/genética , Regiões 3' não Traduzidas , Animais , Proliferação de Células , Imunofluorescência , Regulação da Expressão Gênica , Via de Sinalização Hippo , Humanos , Modelos Biológicos , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Estabilidade de RNA , Transdução de Sinais , Proteínas de Sinalização YAP
6.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203338

RESUMO

Medicinal chemistry is constantly searching for new approaches to develop more effective and targeted therapeutic molecules. The design of peptidomimetics is a promising emerging strategy that is aimed at developing peptides that mimic or modulate the biological activity of proteins. Among these, stapled peptides stand out for their unique ability to stabilize highly frequent helical motifs, but they have failed to be systematically reported. Here, we exploit chemically diverse helix-inducing i, i + 4 constraints-lactam, hydrocarbon, triazole, double triazole and thioether-on two distinct short sequences derived from the N-terminal peptidase domain of hACE2 upon structural characterization and in silico alanine scan. Our overall objective was to provide a sequence-independent comparison of α-helix-inducing staples using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. We identified a 9-mer lactam stapled peptide derived from the hACE2 sequence (His34-Gln42) capable of reaching its maximal helicity of 55% with antiviral activity in bioreporter- and pseudovirus-based inhibition assays. To the best of our knowledge, this study is the first comprehensive investigation comparing several cyclization methods with the goal of generating stapled peptides and correlating their secondary structures with PPI inhibitions using a highly topical model system (i.e., the interaction of SARS-CoV-2 Spike RBD with hACE2).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ciclização , Lactamas , Peptídeos/farmacologia , Triazóis
7.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33578036

RESUMO

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/farmacologia , Bioensaio , Lectinas/farmacologia , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Asparagina/química , Asparagina/metabolismo , Sítios de Ligação , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Genes Reporter , Glicosilação/efeitos dos fármacos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
8.
Bioprocess Biosyst Eng ; 45(2): 237-256, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34596787

RESUMO

Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomaterials, gained popularity for the enzymes' improved stability, reusability, and ease of separation from the biocatalytic process. Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal-organic frameworks, multi-walled or single-walled carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical compositions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understanding, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, biofuel production, textile, leather, detergent, food industries and antifouling.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Nanoestruturas/química
9.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668756

RESUMO

Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays. Specifically, we examine the mutational effects on RBD-ACE2 binding ability, efficacy of competitive inhibitors, as well as neutralizing antibody activity. We also look at the implications the mutations may have on virus transmissibility, host susceptibility, and the virus transmission path to humans. These critical determinants of virus-host interactions may provide more effective targets for ongoing vaccines, drug development, and potentially pave the way for determining the genetic variation underlying disease severity.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes/imunologia , Antivirais/farmacologia , Sítios de Ligação , COVID-19/imunologia , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , Alinhamento de Sequência , Tratamento Farmacológico da COVID-19
10.
FASEB J ; 33(11): 12487-12499, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431076

RESUMO

The Hippo pathway is an emerging signaling pathway that plays important roles in organ size control, tissue homeostasis, tumorigenesis, metastasis, drug resistance, and immune response. Although many regulators of the Hippo pathway have been reported, the extracellular stimuli and kinase regulators of the Hippo pathway remain largely unknown. To identify novel regulars of the Hippo pathway, in this study we created the first ultra-bright NanoLuc biosensor (BS) to monitor the activity of large tumor suppressor (LATS) kinase 1, a central player of the Hippo pathway. We show that this NanoLuc BS achieves significantly advanced sensitivity and stability both in vitro using purified proteins and in vivo in living cells and mice. Using this BS, we perform the first kinome-wide screen and identify many kinases regulating LATS and its effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ- binding motif (TAZ). We also show for the first time that activation of receptor tyrosine kinase anaplastic lymphoma kinase (ALK) by its extracellular ligand family with sequence similarity (FAM)150 activates Hippo effector YAP/TAZ by increasing their nuclear translocation. Significantly, we show that constitutively active ALK induces tumorigenic phenotypes, such as increased cancer cell proliferation/colony formation via YAP/TAZ and elevated immune evasion via YAP/TAZ-programmed death-ligand 1 in breast and lung cancer cells. In summary, we have developed a new LATS BS for cancer biology and therapeutics research and uncovered a novel ALK-LATS-YAP/TAZ signaling axis that may play important roles in cancer and possibly other biologic processes.-Nouri, K., Azad, T., Lightbody, E., Khanal, P., Nicol, C. J., Yang, X. A kinome-wide screen using a NanoLuc LATS luminescent biosensor identifies ALK as a novel regulator of the Hippo pathway in tumorigenesis and immune evasion.


Assuntos
Quinase do Linfoma Anaplásico/imunologia , Técnicas Biossensoriais , Neoplasias da Mama/imunologia , Carcinogênese/imunologia , Neoplasias Pulmonares/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Evasão Tumoral , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Quinase do Linfoma Anaplásico/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Feminino , Células HEK293 , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas de Sinalização YAP
11.
Anal Bioanal Chem ; 406(23): 5541-60, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002334

RESUMO

Bioluminescent systems are considered as potent reporter systems for bioanalysis since they have specific characteristics, such as relatively high quantum yields and photon emission over a wide range of colors from green to red. Biochemical events are mostly accomplished through large protein machines. These molecular complexes are built from a few to many proteins organized through their interactions. These protein-protein interactions are vital to facilitate the biological activity of cells. The split-luciferase complementation assay makes the study of two or more interacting proteins possible. In this technique, each of the two domains of luciferase is attached to each partner of two interacting proteins. On interaction of those proteins, luciferase fragments are placed close to each other and form a complemented luciferase, which produces a luminescent signal. Split luciferase is an effective tool for assaying biochemical metabolites, where a domain or an intact protein is inserted into an internally fragmented luciferase, resulting in ligand binding, which causes a change in the emitted signals. We review the various applications of this novel luminescent biosensor in studying protein-protein interactions and assaying metabolites involved in analytical biochemistry, cell communication and cell signaling, molecular biology, and the fate of the whole cell, and show that luciferase-based biosensors are powerful tools that can be applied for diagnostic and therapeutic purposes.


Assuntos
Luciferases/química , Medições Luminescentes/tendências , Mapeamento de Interação de Proteínas/tendências , Animais , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
12.
Sci Rep ; 14(1): 1633, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238435

RESUMO

Rapid and label-free detection of very low concentrations of biomarkers in disease diagnosis or therapeutic drug monitoring is essential to prevent disease progression in Point of Care Testing. For this purpose, we propose a multi-purpose optical Bio-Micro-Electro-Mechanical-System (BioMEMS) sensing platform which can precisely measure very small changes of biomolecules concentrations in plasma-like buffer samples. This is realized by the development of an interferometric detection method on highly sensitive MEMS transducers (cantilevers). This approach facilitates the precise analysis of the obtained results to determine the analyte type and its concentrations. Furthermore, the proposed multi-purpose platform can be used for a wide range of biological assessments in various concentration levels by the use of an appropriate bioreceptor and the control of its coating density on the cantilever surface. In this study, the present system is prepared for the identification of digoxin medication in its therapeutic window for therapeutic drug monitoring as a case study. The experimental results represent the repeatability and stability of the proposed device as well as its capability to detect the analytes in less than eight minutes for all samples. In addition, according to the experiments carried out for very low concentrations of digoxin in plasma-like buffer, the detection limit of LOD = 300 fM and the maximum sensitivity of S = 5.5 × 1012 AU/M are achieved for the implemented biosensor. The present ultrasensitive multi-purpose BioMEMS sensor can be a fully-integrated, cost-effective device to precisely analyze various biomarker concentrations for various biomedical applications.


Assuntos
Técnicas Biossensoriais , Sistemas Microeletromecânicos , Sistemas Automatizados de Assistência Junto ao Leito , Biomarcadores , Técnicas Biossensoriais/métodos
13.
Front Immunol ; 15: 1272351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558795

RESUMO

In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Vaccinia virus/genética , Neoplasias/terapia , Neoplasias/genética , Imunoterapia
14.
Genes (Basel) ; 14(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37372372

RESUMO

Leveraging computation in the development of peptide therapeutics has garnered increasing recognition as a valuable tool to generate novel therapeutics for disease-related targets. To this end, computation has transformed the field of peptide design through identifying novel therapeutics that exhibit enhanced pharmacokinetic properties and reduced toxicity. The process of in-silico peptide design involves the application of molecular docking, molecular dynamics simulations, and machine learning algorithms. Three primary approaches for peptide therapeutic design including structural-based, protein mimicry, and short motif design have been predominantly adopted. Despite the ongoing progress made in this field, there are still significant challenges pertaining to peptide design including: enhancing the accuracy of computational methods; improving the success rate of preclinical and clinical trials; and developing better strategies to predict pharmacokinetics and toxicity. In this review, we discuss past and present research pertaining to the design and development of in-silico peptide therapeutics in addition to highlighting the potential of computation and artificial intelligence in the future of disease therapeutics.


Assuntos
Inteligência Artificial , Plumas , Animais , Simulação de Acoplamento Molecular , Plumas/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Proteínas/metabolismo
15.
Pharmaceuticals (Basel) ; 16(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37242495

RESUMO

The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, despite promoting rapid clearance of the oncolytic virus itself. Herein, we developed an inducible expression system based on a Split-T7 RNA polymerase for oncolytic poxviruses to regulate the spatial and temporal expression of a beneficial transgene. This expression system utilizes approved anti-neoplastic rapamycin analogues for transgene induction. This treatment regimen thus offers a triple anti-tumour effect through the oncolytic virus, the induced transgene, and the pharmacologic inducer itself. More specifically, we designed our therapeutic transgene by fusing a tumour-targeting chlorotoxin (CLTX) peptide to interleukin-12 (IL-12), and demonstrated that the constructs were functional and cancer-selective. We next encoded this construct into the oncolytic vaccinia virus strain Copenhagen (VV-iIL-12mCLTX), and were able to demonstrate significantly improved survival in multiple syngeneic murine tumour models through both localized and systemic virus administration, in combination with rapalogs. In summary, our findings demonstrate that rapalog-inducible genetic switches based on Split-T7 polymerase allow for regulation of the oncolytic virus-driven production of tumour-localized IL-12 for improved anti-cancer immunotherapy.

16.
Mol Ther Methods Clin Dev ; 31: 101110, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37822719

RESUMO

SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.

17.
Nat Commun ; 14(1): 3035, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236967

RESUMO

The large coding potential of vaccinia virus (VV) vectors is a defining feature. However, limited regulatory switches are available to control viral replication as well as timing and dosing of transgene expression in order to facilitate safe and efficacious payload delivery. Herein, we adapt drug-controlled gene switches to enable control of virally encoded transgene expression, including systems controlled by the FDA-approved rapamycin and doxycycline. Using ribosome profiling to characterize viral promoter strength, we rationally design fusions of the operator element of different drug-inducible systems with VV promoters to produce synthetic promoters yielding robust inducible expression with undetectable baseline levels. We also generate chimeric synthetic promoters facilitating additional regulatory layers for VV-encoded synthetic transgene networks. The switches are applied to enable inducible expression of fusogenic proteins, dose-controlled delivery of toxic cytokines, and chemical regulation of VV replication. This toolbox enables the precise modulation of transgene circuitry in VV-vectored oncolytic virus design.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Vetores Genéticos/genética , Vaccinia virus/genética , Vírus Oncolíticos/genética , Regiões Promotoras Genéticas/genética
18.
Front Immunol ; 14: 1099459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969187

RESUMO

Introduction: Adipocytes in the tumour microenvironment are highly dynamic cells that have an established role in tumour progression, but their impact on anti-cancer therapy resistance is becoming increasingly difficult to overlook. Methods: We investigated the role of adipose tissue and adipocytes in response to oncolytic virus (OV) therapy in adipose-rich tumours such as breast and ovarian neoplasms. Results: We show that secreted products in adipocyte-conditioned medium significantly impairs productive virus infection and OV-driven cell death. This effect was not due to the direct neutralization of virions or inhibition of OV entry into host cells. Instead, further investigation of adipocyte secreted factors demonstrated that adipocyte-mediated OV resistance is primarily a lipid-driven phenomenon. When lipid moieties are depleted from the adipocyte-conditioned medium, cancer cells are re-sensitized to OV-mediated destruction. We further demonstrated that blocking fatty acid uptake by cancer cells, in a combinatorial strategy with virotherapy, has clinical translational potential to overcome adipocyte-mediated OV resistance. Discussion: Our findings indicate that while adipocyte secreted factors can impede OV infection, the impairment of OV treatment efficacy can be overcome by modulating lipid flux in the tumour milieu.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Humanos , Feminino , Microambiente Tumoral , Meios de Cultivo Condicionados , Vírus Oncolíticos/fisiologia , Neoplasias Ovarianas/terapia , Lipídeos
19.
NAR Genom Bioinform ; 4(3): lqac058, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36004308

RESUMO

The coronavirus disease 19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prompted the development of diagnostic and therapeutic frameworks for timely containment of this pandemic. Here, we utilized our non-conventional computational algorithm, InSiPS, to rapidly design and experimentally validate peptides that bind to SARS-CoV-2 spike (S) surface protein. We previously showed that this method can be used to develop peptides against yeast proteins, however, the applicability of this method to design peptides against other proteins has not been investigated. In the current study, we demonstrate that two sets of peptides developed using InSiPS method can detect purified SARS-CoV-2 S protein via ELISA and Surface Plasmon Resonance (SPR) approaches, suggesting the utility of our strategy in real time COVID-19 diagnostics. Mass spectrometry-based salivary peptidomics shortlist top SARS-CoV-2 peptides detected in COVID-19 patients' saliva, rendering them attractive SARS-CoV-2 diagnostic targets that, when subjected to our computational platform, can streamline the development of potent peptide diagnostics of SARS-CoV-2 variants of concern. Our approach can be rapidly implicated in diagnosing other communicable diseases of immediate threat.

20.
J Med Chem ; 65(4): 2836-2847, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34328726

RESUMO

The SARS-CoV-2 viral spike protein S receptor-binding domain (S-RBD) binds ACE2 on host cells to initiate molecular events, resulting in intracellular release of the viral genome. Therefore, antagonists of this interaction could allow a modality for therapeutic intervention. Peptides can inhibit the S-RBD:ACE2 interaction by interacting with the protein-protein interface. In this study, protein contact atlas data and molecular dynamics simulations were used to locate interaction hotspots on the secondary structure elements α1, α2, α3, ß3, and ß4 of ACE2. We designed a library of discontinuous peptides based upon a combination of the hotspot interactions, which were synthesized and screened in a bioluminescence-based assay. The peptides demonstrated high efficacy in antagonizing the SARS-CoV-2 S-RBD:ACE2 interaction and were validated by microscale thermophoresis which demonstrated strong binding affinity (∼10 nM) of these peptides to S-RBD. We anticipate that such discontinuous peptides may hold the potential for an efficient therapeutic treatment for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Peptídeos/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA