Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362455

RESUMO

l-Ornithine decarboxylase (ODC) is the rate-limiting enzyme of de novo polyamine synthesis in humans and fungi. Elevated levels of polyamine by over-induction of ODC activity in response to tumor-promoting factors has been frequently reported. Since ODC from fungi and human have the same molecular properties and regulatory mechanisms, thus, fungal ODC has been used as model enzyme in the preliminary studies. Thus, the aim of this work was to purify ODC from fungi, and assess its kinetics of inhibition towards various compounds. Forty fungal isolates were screened for ODC production, twenty fungal isolates have the higher potency to grow on L-ornithine as sole nitrogen source. Aspergillus terreus was the most potent ODC producer (2.1 µmol/mg/min), followed by Penicillium crustosum and Fusarium fujikuori. These isolates were molecularly identified based on their ITS sequences, which have been deposited in the NCBI database under accession numbers MH156195, MH155304 and MH152411, respectively. ODC was purified and characterized from A. terreus using SDS-PAGE, showing a whole molecule mass of ~110 kDa and a 50 kDa subunit structure revealing its homodimeric identity. The enzyme had a maximum activity at 37 °C, pH 7.4-7.8 and thermal stability for 20 h at 37 °C, and 90 days storage stability at 4 °C. A. terreus ODC had a maximum affinity (Km) for l-ornithine, l-lysine and l-arginine (0.95, 1.34 and 1.4 mM) and catalytic efficiency (kcat/Km) (4.6, 2.83, 2.46 × 10-5 mM-1·s-1). The enzyme activity was strongly inhibited by DFMO (0.02 µg/mL), curcumin (IC50 0.04 µg/mL), propargylglycine (20.9 µg/mL) and hydroxylamine (32.9 µg/mL). These results emphasize the strong inhibitory effect of curcumin on ODC activity and subsequent polyamine synthesis. Further molecular dynamic studies to elucidate the mechanistics of ODC inhibition by curcumin are ongoing.


Assuntos
Aspergillus/enzimologia , Inibidores da Ornitina Descarboxilase/química , Ornitina Descarboxilase/química , Aspergillus/classificação , Ativação Enzimática/efeitos dos fármacos , Cinética , Peso Molecular , Ornitina Descarboxilase/isolamento & purificação , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Artigo em Inglês | MEDLINE | ID: mdl-36294202

RESUMO

A novel ruthenium(III)-pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 µM for HepG2, 38.5 µM for T47D, 39.7 µM for HCT, and 46.7 µM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3-treated cells. The score values for the two receptors were -3.25 and -3.91 kcal/mol.


Assuntos
Antineoplásicos , Rutênio , Humanos , Simulação de Acoplamento Molecular , Bases de Schiff/farmacologia , Bases de Schiff/química , Células Hep G2 , Caspase 3/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Ligantes , Caspase 7/metabolismo , Fator A de Crescimento do Endotélio Vascular , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Apoptose , Pirimidinas , DNA , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA