Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(19): 4851-4856, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29666256

RESUMO

Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world's largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world's most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates.


Assuntos
Carbono/metabolismo , Aquecimento Global , Modelos Biológicos , Solo , Áreas Alagadas
2.
PLoS One ; 18(4): e0283386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018219

RESUMO

The ubiquity of Smartphone applications that aim to identify organisms, including plants, make them potentially useful for increasing people's engagement with the natural world. However, how well such applications actually identify plants has not been compressively investigated nor has an easily repeatable scoring system to compare across plant groups been developed. This study investigated the ability of six common Smartphone applications (Google Lens, iNaturalist, Leaf Snap, Plant Net, Plant Snap, Seek) to identify herbaceous plants and developed a repeatable scoring system to assess their success. Thirty-eight species of plant were photographed in their natural habitats using a standard Smartphone (Samsung Galaxy A50) and assessed in each app without image enhancement. All apps showed considerable variation across plant species and were better able to identify flowers than leaves. Plant Net and Leaf Snap outperformed the other apps. Even the higher preforming apps did not have an accuracy above ~88% and lower scoring apps were considerably below this. Smartphone apps present a clear opportunity to encourage people to engage more with plants. Their accuracy can be good, but should not be considered excellent or assumed to be correct, particularly if the species in question may be toxic or otherwise problematic.


Assuntos
Aplicativos Móveis , Humanos , Smartphone
3.
Ecol Evol ; 12(7): e9019, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35845388

RESUMO

Civilization is dependent upon plants for survival. Plants permeate our every moment and our relationship with them will dictate how we will manage the threats of climate change and ecological collapse defining the Anthropocene. Yet, despite the significance of plants and the critical role they have played in shaping ecosystems, civilizations, and human cultures, many people are now disconnected from the botanical world. Students are presented with little plant content, particularly identification, compared with animal content. Consequently, we are producing few plant scientists and educating fewer scientists about plants. This drives a self-accelerating cycle we term the extinction of botanical education. A process of knowledge erosion, that in this instance contributes to our separation from the natural world, makes us blind to the biodiversity crisis and inhibits our ability to restore it. We argue that neglecting the importance of plants within education threatens the foundations of industries and professions that rely on this knowledge. Furthermore, this extinction of botanical education creates an existential threat: Without the skills to fully comprehend the scale of and solutions to human-induced global change, how do we as a society combat it? We present key research agendas that will enable us to reverse the extinction of botanical education and highlight the critical role plants play on the global stage.

4.
Ecol Evol ; 11(8): 3551-3558, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33821181

RESUMO

The challenges facing higher education in response to COVID-19 are significant and possibly none more so than in ecology and aligned disciplines. Not only did most ecology lecturers have to rush lectures and tutorials online, but also laboratory and field classes. We reflect on our experience of this move and also consider those of 30 other ecology-aligned teaching academics to summarize the challenges faced in the move online early in 2020 and the developing plans for adapting ecology teaching and learning going into the 2020/21 academic year. The move online had the most significant impact on field classes, with more of these canceled than lectures or laboratory classes. Most respondents to an online poll also highlighted that many respondents (~45%) felt that ecology was more impacted by COVID-19 that even other STEM disciplines. The availability of technological solutions is key to moving forward and will hopefully enhance the teaching and learning experience for many beyond the current crisis.

5.
PeerJ ; 9: e11783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447618

RESUMO

Reynoutria japonica (Japanese knotweed) is a problematic invasive plant found in many areas of Europe and North America. Notably, in the UK, the species can cause issues with mortgage acquisition. Control of R. japonica is complicated by its ability to regenerate from small fragments of plant material; however, there remains uncertainty about how much (in terms of mass) rhizome is required for successful regeneration. This study investigated the ability of crowns and rhizomes with different numbers of nodes to regenerate successfully from three sites in the north of England, UK. Two of the sites had been subject to herbicide treatment for two years prior to sampling and the third site had no history of herbicide treatment. No significant differences were observed in regenerated stem diameter, maximum height of stem and maximum growth increments among crowns. All traits measured from the planted crowns were significantly greater than those of the planted rhizome fragments and at least one node was necessary for successful regeneration of rhizomes. The smallest initial fragment weight to regenerate and survive the experiment was 0.5 g. Subjecting all plant material to desiccation for 38 days resulted in no regrowth (emergence or regeneration) after replanting. These findings suggest that desiccation could be a valuable management strategy for small to medium scale infestations common in urban settings.

6.
PeerJ ; 6: e5246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065865

RESUMO

Fallopia japonica (Japanese knotweed) is a well-known invasive alien species in the UK and elsewhere in Europe and North America. The plant is known to have a negative impact on local biodiversity, flood risk and ecosystem services; but in the UK it is also considered to pose a significant risk to the structural integrity of buildings that are within seven m of the above ground portions of the plant. This has led to the presence of the plant on residential properties regularly being used to refuse mortgage applications. Despite the significant socioeconomic impacts of such automatic mortgage option restriction, little research has been conducted to investigate this issue. The 'seven-m rule' is derived from widely adopted government guidance in the UK. This study considered if there is evidence to support this phenomenon in the literature, reports the findings of a survey of invasive species control contractors and property surveyors to determine if field observations support these assertions, and reports a case study of 68 properties, located on three streets in northern England where F. japonica was recorded. Additionally, given the importance of proximity, the seven-m rule is also tested based on data collected during the excavation based removal of F. japonica from 81 sites. No support was found to suggest that F. japonica causes significant damage to built structures, even when it is growing in close proximity to them and certainly no more damage than other plant species that are not subject to such stringent lending policies. It was found that the seven-m rule is not a statistically robust tool for estimating likely rhizome extension. F. japonica rhizome rarely extends more than four m from above ground plants and is typically found within two m for small stands and 2.5 m for large stands. Based on these findings, the practice of automatically restricting mortgage options for home buyers when F. japonica is present, is not commensurate with the risk.

7.
PeerJ ; 6: e5411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233992

RESUMO

The estates of stately homes or manor houses are an untapped resource for assessing the ecosystem services provided by trees. Many of these estates have large collections of trees with clear value in terms of carbon storage, runoff prevention, and pollution removal along with additional benefits to biodiversity and human health. The estate of Harewood House in North Yorkshire represents an ideal example of such a stately home with a mixture of parkland and more formally planted gardens. The trees in each type of garden were analysed for height, diameter at breast height and light exposure. The data were then processed in iTrees software to generate economic benefits for each tree in both gardens. The analysis found that the larger North Front parkland garden had greater total benefits but the more densely planted formal West Garden had the greater per hectare value. In total, the trees on Harewood House estate are estimated to provide approximately £29 million in ecosystem service benefits. This study is the first to analyse the trees of stately homes for economic benefits and highlights that the trees are a valuable commodity for the estates. This should be considered in future planning and management of such estates.

8.
Sci Rep ; 5: 15579, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493541

RESUMO

The use of volcanic ash layers for dating and correlation (tephrochronology) is widely applied in the study of past environmental changes. We describe the first cryptotephra (non-visible volcanic ash horizon) to be identified in the Amazon basin, which is tentatively attributed to a source in the Ecuadorian Eastern Cordillera (0-1°S, 78-79°W), some 500-600 km away from our field site in the Peruvian Amazon. Our discovery 1) indicates that the Amazon basin has been subject to volcanic ash fallout during the recent past; 2) highlights the opportunities for using cryptotephras to date palaeoenvironmental records in the Amazon basin and 3) indicates that cryptotephra layers are preserved in a dynamic Amazonian peatland, suggesting that similar layers are likely to be present in other peat sequences that are important for palaeoenvironmental reconstruction. The discovery of cryptotephra in an Amazonian peatland provides a baseline for further investigation of Amazonian tephrochronology and the potential impacts of volcanism on vegetation.

9.
Sci Rep ; 5: 10264, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26020614

RESUMO

There has been recent debate over stratigraphic markers used to demarcate the Anthropocene from the Holocene Epoch. However, many of the proposed markers are found only in limited areas of the world or do not reflect human impacts on the environment. Here we show that spheroidal carbonaceous particles (SCPs), a distinct form of black carbon produced from burning fossil fuels in energy production and heavy industry, provide unambiguous stratigraphic markers of the human activities that have rapidly changed planet Earth over the last century. SCPs are found in terrestrial and marine sediments or ice cores in every continent, including remote areas such as the high Arctic and Antarctica. The rapid increase in SCPs mostly occurs in the mid-twentieth century and is contemporaneous with the 'Great Acceleration'. It therefore reflects the intensification of fossil fuel usage and can be traced across the globe. We integrate global records of SCPs and propose that the global rapid increase in SCPs in sedimentary records can be used to inform a Global Standard Stratigraphic Age for the Anthropocene. A high-resolution SCP sequence from a lake or peatland may provide the much-needed 'Golden Spike' (Global Boundary Stratotype Section and Point).

10.
PLoS One ; 8(4): e60614, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593262

RESUMO

The Triassic-Jurassic boundary (Tr-J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr-J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr-J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr-J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy.


Assuntos
Atmosfera , Folhas de Planta/química , Dióxido de Enxofre/análise , Ecossistema , Fósseis , Groenlândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA