Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Mol Med ; 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34018309

RESUMO

PGC-1α/FNDC5/BDNF has found to be a critical pathway in neurodegeneration. MicroRNAs (miR(NA)s) are non-coding regulatory RNAs whose dysregulation has been observed in multiple neurological disorders, and miRNA-mediated gene deregulation plays a decisive role in PD. Here, candidate miRNA was chosen based on the literature survey and in silico studies. Chronic and acute models of PD were created using MPP+-treated SH-SY5Y cells. Twenty PD patients and 20 healthy volunteers were recruited. RT-qPCR was performed to assess the expression of miRNA and genes. Severe mitochondrial dysfunction induced by acute MPP+ treatment instigated compensatory mechanisms through enhancing expression of PGC-1α/FNDC5/BDNF pathway genes, while chronic MPP+ toxicity led to down-regulated levels of the genes in SH-SY5Y cells. PD peripheral blood mononuclear cells (PBMCs) also showed decreased expression of target genes. There were significant changes in the level of miR-193b in both models, as well as PD PBMCs. Moreover, miR-193b overexpression significantly affected PGC-1α, FNDC5 and TFAM levels. Interestingly, down-regulations of PGC-1α, FNDC5, BDNF and TFAM were inversely correlated with miR-193b up-regulation in PD PBMCs. This study showed the deregulation of PGC-1α/FNDC5/BDNF pathway in PD models and PBMCs, verifying its importance in neurodegeneration. Our findings also revealed that miR-193b functions in PD development, possibly through regulating PGC-1α/FNDC5/BDNF pathway, suggesting miR-193b as a potential biomarker for PD diagnosis.

2.
J Cell Mol Med ; 24(4): 2622-2634, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930701

RESUMO

Parkinson's disease (PD) is a frequent progressive neurodegenerative disorder. Impaired mitochondrial function is a major feature of sporadic PD. Some susceptibility or causative genes detected in PD are strongly associated with mitochondrial dysfunction including PGC1α, TFAM and GSK3ß. microRNAs (miRNAs) are non-coding RNAs whose altered levels are proven in disparate PD models and human brains. Therefore, the aim of this study was to detect modulations of miRs upstream of PGC1α, TFAM and GSK3ß in association with PD onset and progress. In this study, a total of 33 PD subjects and 25 healthy volunteers were recruited. Candidate miRNA (miR-376a) was selected through target prediction tools and literature survey. Chronic and acute in vitro PD models were created by MPP+ -intoxicated SHSY5Y cells. The levels of miR-376a and aforementioned genes were assessed by RT-qPCR. The expression of target genes was decreased in chronic model while there were dramatically up-regulated levels of those genes in acute model of PD. miR-376a was strongly altered in both acute and chronic PD models as well as PBMCs of PD patients. Our results also showed overexpression of PGC1α, and TFAM in PBMCs is inversely correlated with down-regulation of miR-376a, suggesting that miR-376a possibly has an impact on PD pathogenesis through regulation of these genes which are involved in mitochondrial function. miR-376a expression in PD-derived PBMCs was also correlated with disease severity and may serve as a potential biomarker for PD diagnosis. This is the first study showing altered levels of miR-376a in PD models and PBMCs, suggesting the probable role of this miRNA in PD pathogenesis. The present study also proposed TFAM and PGC1α as target genes of miR-376a for the first time, through which it possibly can exert its impact on PD pathogenesis.


Assuntos
MicroRNAs/genética , Doença de Parkinson/genética , Idoso , Apoptose/genética , Biomarcadores/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regulação para Cima/genética
3.
Iran J Biotechnol ; 21(1): e3211, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36811100

RESUMO

Background: Overexpression of miR-141 and miR-200a is known to be associated with the differentiation of T helper 17 (Th17) cells, which are key players in the pathophysiology of autoimmune disorders. However, the function and governing mechanism of these two microRNAs (miRNAs) in Th17 cell skewing are poorly defined. Objectives: The aim of the present study was to identify the common upstream transcription factors and downstream target genes of miR-141 and miR-200a to obtain a better insight into the possible dysregulated molecular regulatory networks driving miR-141/miR-200a-mediated Th17 cell development. Materials and Methods: A consensus-based prediction strategy was applied for in-silico identification of potential transcription factors and putative gene targets of miR-141 and miR-200a. Thereafter, we analyzed the expression patterns of candidate transcription factors and target genes during human Th17 cell differentiation by quantitative real-time PCR and examined the direct interaction between both miRNAs and their potential target sequences using dual-luciferase reporter assays. Results: According to our miRNA-based and gene-based interaction network analyses, pre-B cell leukemia homeobox (PBX1) and early growth response 2 (EGR2) were respectively taken into account as the potential upstream transcription factor and downstream target gene of miR-141 and miR-200a. There was a significant overexpression of the PBX1 gene during the Th17 cell induction period. Furthermore, both miRNAs could directly target EGR2 and inhibit its expression. As a downstream gene of EGR2, the suppressor of cytokine signaling 3 (SOCS3) was also downregulated during the differentiation process. Conclusions: These results indicate that activation of the PBX1/miR-141-miR-200a/EGR2/SOCS3 axis may promote Th17 cell development and, therefore, trigger or exacerbate Th17-mediated autoimmunity.

4.
Biomed Pharmacother ; 151: 113144, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623167

RESUMO

Breast cancer (BC) is the most frequently diagnosed malignancy in women and a major public health concern. The Hippo pathway is an evolutionarily conserved signaling pathway that serves as a key regulator for a wide variety of biological processes. Hippo signaling has been shown to have both oncogenic and tumor-suppressive functions in various cancers. Core components of the Hippo pathway consist of various kinases and downstream effectors such as YAP/TAZ. In the current report, differential expression of Hippo pathway elements as well as the correlation of Hippo pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, receptor status, and methylation status, has been investigated in BC using METABRIC and TCGA datasets. In this review, we note deregulation of several Hippo signaling elements in BC patients. Moreover, we see examples of negative correlations between methylation of Hippo genes and mRNA expression. The expression of Hippo genes significantly varies between different receptor subgroups. Because of the clear associations between mRNA expression and methylation status, DNA methylation may be one of the mechanisms that regulate the Hippo pathway in BC cells. Differential expression of Hippo genes among various BC molecular subtypes suggests that Hippo signaling may function differently in different subtypes of BC. Our data also highlights an interesting link between Hippo components' transcription and ER negativity in BC. In conclusion, substantial deregulation of Hippo signaling components suggests an important role of these genes in breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Feminino , Via de Sinalização Hippo , Humanos , RNA Mensageiro/genética , Transdução de Sinais/genética , Transcriptoma
5.
Pathol Res Pract ; 238: 154077, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037658

RESUMO

MicroARNAs (miRNAs) are linked to a variety of cancers, which resulted in molecular pathway dysregulation in chronic lymphocytic leukemia (CLL). Using five dysregulated miRNAs identified by literature mining and in silico analysis, we were able to demonstrate the critical role that the TGFBR1 and TGFB receptor signaling pathways play in the state of CLL. Assays using real-time PCR were run on 30 patients and 30 healthy controls. This study showed that patient samples have considerably higher levels of miR-574 and miR-499. Notably, the same groups had lower expression levels of miR-125b, miR-106a, and miR-9. Furthermore, we suggested that TGFBR1 and TGFBR2 expression levels were decreased in patients, and we suggested that these genes could be targets for our profile miRNAs. In the current study, we hypothesized that miR-574, miR-499, miR-125b, miR-106a, and miR-9 are likely five new potential biomarkers for early diagnosis. Our research also showed that these profile miRNAs have a role in the formation of CLL, possibly through controlling the TGFBR1 and TGFBR2 pathways. This suggests that these profile miRNAs could serve as biomarkers for the diagnosis and prognosis of CLL.

6.
Hum Cell ; 34(5): 1375-1387, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34086186

RESUMO

Among T helper (Th) lineages differentiated from naïve CD4+ T cells, interleukin (IL)-17-producing Th17 cells are highly correlated with the pathogenesis of autoimmune disorders. This study aimed to clarify the involvement of miR-141-3p and miR-200a-3p in Th17 cell differentiation as well as explore their potential target genes involved. For this purpose, human naïve CD4+ T cells were cultured under Th17 cell polarizing condition. The differentiation process was confirmed through measurement of IL-17 secretion using the ELISA method and assessment of Th17 cell-defining genes expression during the differentiation period. MiR-141-3p and miR-200a-3p downstream genes were identified via consensus and integration in silico approach and their expression pattern and alterations were evaluated by quantitative real-time PCR. Finally, direct interaction between both microRNAs (miRNAs) and their common predicted target sequences was approved by dual-luciferase reporter assay. Highly increased IL-17 secretion and Th17 lineage-specific genes expression confirmed Th17 cell differentiation. Our results have demonstrated that miR-141-3p and miR-200a-3p are Th17 cell-associated miRNAs and their expression level is upregulated significantly during Th17 cell induction. We have also found that retinoic acid receptor beta (RARB) gene, whose product has been reported as a negative regulator of Th17 cell generation, is a direct target of both miRNAs and its downregulation can affect the transcriptional level of JAK/STAT pathway genes. Overall, our results have identified two novel Th17 lineage-associated miRNAs and have provided evidence for the RARB-dependent mechanism of miR-141-3p and miR-200a-3p-induced Th17 cell differentiation and hence Th17-mediated autoimmunity.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Células Th17/fisiologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Células Cultivadas , Humanos
7.
Mol Genet Genomic Med ; 8(12): e1538, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128433

RESUMO

BACKGROUND: Th17 cells are a newly discovered subset of CD4+ T cells known as key participants in various immune responses and inflammatory conditions including autoimmune diseases. Mi(cro)RNAs are a family of non-coding RNAs that regulate numerous critical immune functions. Immuno-miRNAs modulate cell biological processes in T cells, such as differentiation and function of Th17 cells. The aim of the present study is to investigate the expression of miR-9-5p, miR-193b-3p, and autoimmunity-related genes during human Th17 cells differentiation. METHODS: Human naïve CD4+ T cells were purified from peripheral blood mononuclear cells (PBMCs) by magnetic cell sorting system (MACS) and their purity was checked by flow-cytometric analysis. Naïve CD4+ T cells were cultured under Th17-polarizing condition for 6 days. IL- 17 secretion was determined by means of enzyme-linked immunosorbent assay (ELISA). Next, the expression levels of miRNAs and putative targets genes were assessed by qRT-PCR at different time points of differentiation. RESULTS: Our result showed dramatic downregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes during human Th17 differentiation. Polarization also had a significant inducible effect on the expression of miR-9 and miR-193b over differentiation of human Th17 cells. According to our results, miR-9-5p and miR-193b-3p may contribute to Th17 differentiation probably by inhibiting the expression of negative regulators of Th17 differentiation. CONCLUSION: This study confirmed deregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes in Th17 differentiation process and introduced miR-9 and miR-193b as Th17 cell-associated miRNAs, making them good candidates for further investigations.


Assuntos
Diferenciação Celular , MicroRNAs/genética , Células Th17/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Apirase/genética , Apirase/metabolismo , Células Cultivadas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Células Th17/citologia , Regulação para Cima
8.
Cell J ; 22(2): 165-170, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31721530

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is a chronic disorder involving both inflammatory and neurodegenerative responses. Long non-coding RNAs (lncRNAs) have been had an emerging role as the biomarkers of different disorders, including autoimmune diseases. Previous studies have shown that NR_003531.3 (MEG3a), AC000061.1_201, and AC007182.6 play a role in the pathogenesis of human autoimmune diseases. However, the potential significance of these lncRNAs, as the diagnostic biomarkers of MS, has not been studied yet. We aimed to quantitatively evaluate the expression levels of NR_003531.3, AC000061.1_201, and AC007182.6 in peripheral blood samples of MS patients in comparison with healthy controls. MATERIALS AND METHODS: In this case-control study, the blood samples from 20 MS patients and 10 healthy controls were collected. Total RNA was extracted, and the expression levels of three selected lncRNAs were quantitatively measured using the quantitative real time-polymerase chain reaction (qRT-PCR) method. RESULTS: We detected a significant down-regulation in the expression of NR_003531.3 in MS patients, while no marked changes were observed in the expression of AC000061.1_201 and AC007182.6 in patients compared with controls. Based on the receiver operating characteristic (ROC) curve analysis, NR_003531.3 could discriminate MS patients from healthy subjects effectively. Regarding the prognosis of MS patients, NR_003531.3 is significantly and inversely correlated with the expanded disability status scale (EDSS). CONCLUSION: The potential role of NR_003531.3 lncRNA as a diagnostic biomarker to distinguish MS patients is proposed. Prognostically, NR_003531.3 correlates with lower disability rates in MS patients.

9.
Mol Genet Genomic Med ; 7(3): e548, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30712312

RESUMO

BACKGROUND: Parkinson's disease (PD) is ranked as the second most common neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra. Micro(mi)RNAs are a class of small noncoding RNAs that regulate gene expression and aberrant expression of them is closely correlated with many neurodegenerative conditions including PD. Silent information regulator 1 (SIRT1) as a known deacetylase and B-cell lymphoma-2 (BCL2) as an antiapoptotic factor play vital roles in neural protection and survival. METHODS: Differentiated PC12 cells exposed to MPP+ were served here as a known PD model. Cell viability was determined by MTS assay. Apoptotic cells and ROS levels were detected using flow cytometry. Gene selection and miRNA-mRNA interaction analysis were performed through in silico methods. Relative expression of miRNAs and genes was examined by RT-qPCR. RESULTS: MPP+ exposure markedly reduced cell viability, enhanced oxidative stress, and induced apoptosis in differentiated PC12 cells. Sirt1 and BCL2were shown to be markedly declined in response to MPP+ , while miR-200a and miR-204 were significantly upregulated. CONCLUSION: The first novel finding of the current study is altered expression of miR-200a and miR-204 in differentiated PC12 cells in response to MPP+ , suggesting that deregulation of them participate in MPP+ neurotoxicity mechanisms, possibly via affecting the expression of Sirt1 and BCL2 as potential targets.


Assuntos
Intoxicação por MPTP/metabolismo , MicroRNAs/genética , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Intoxicação por MPTP/genética , MicroRNAs/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Cima
10.
Gene ; 662: 54-65, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631008

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons in substantia nigra. MPP+ as a dopaminergic neurotoxin induces many parkinsonian-like symptoms in cell culture. MicroRNAs are noncoding RNAs which their deregulation participates in neurodegeneration by affecting most of the mechanisms responsible for neurodegenerative diseases. Differentiated PC12 cells impaired by MPP+ were served as an in vitro model of PD. The aim of present research is to evaluate expression of several miRNAs and possible target genes in MPP+-treated differentiated PC12 cells. PC12 cells were differentiated by induction of NGF. Neurite outgrowth was quantified using image analysis software. MTS assay was served to assess cell viability. DCFH-DA assay and Annexin v staining were used to detect reactive oxygen species (ROS) levels and apoptosis, respectively. An in-silico study was performed to make interaction analysis between selected mRNAs and microRNAs. The expression levels of microRNAs and target genes were examined by RT-qPCR. NGF induced differentiation led to a substantial increase in neurite lengths means and percentage of the neurite-bearing cells. NGF-differentiated PC12 cells substantially expressed TH and retained their dopaminergic characteristic after differentiation. NGF treatment enhanced TH gene expression. MPP+ exposure caused loss of cell viability and induced apoptosis and ROS overproduction. SIRT1, BCL2, and BDNF were down-regulated after MPP+-treatment. In contrast, MPP+ toxicity significantly caused up-regulation in miR-34a, miR-141, and miR-9. The present study showed altered levels of selected microRNAs in response to MPP+ for the first time, suggesting that perturbed expression of them may contribute to the PD-related pathogenic processes, probably by affecting the expression of BCL2, BDNF, and SIRT1 as potential targets.


Assuntos
MicroRNAs/genética , 1-Metil-4-fenilpiridínio/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Apoptose , Diferenciação Celular , Sobrevivência Celular , Simulação por Computador , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , MicroRNAs/metabolismo , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Substância Negra/metabolismo , Transcriptoma/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA