Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372146

RESUMO

Branched esters of palmitic acid and hydroxy stearic acid are antiinflammatory and antidiabetic lipokines that belong to a family of fatty acid (FA) esters of hydroxy fatty acids (HFAs) called FAHFAs. FAHFAs themselves belong to oligomeric FA esters, known as estolides. Glycerol-bound FAHFAs in triacylglycerols (TAGs), named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. Here, we characterized the involvement of two major metabolic lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in TAG estolide and FAHFA degradation. We synthesized a library of 20 TAG estolide isomers with FAHFAs varying in branching position, chain length, saturation grade, and position on the glycerol backbone and developed an in silico mass spectra library of all predicted catabolic intermediates. We found that ATGL alone or coactivated by comparative gene identification-58 efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo. Our data show that ATGL and HSL participate in the metabolism of estolides and TAG estolides in distinct manners and are likely to affect the lipokine function of FAHFAs.


Assuntos
Lipase/metabolismo , Esterol Esterase/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ésteres/química , Ácidos Graxos/metabolismo , Feminino , Células HEK293 , Humanos , Lipólise/fisiologia , Metabolismo/fisiologia , Camundongos , Camundongos Knockout , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Triglicerídeos/metabolismo
2.
Prostaglandins Other Lipid Mediat ; 169: 106770, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37633481

RESUMO

Oxylipins are important signalling compounds that are significantly involved in the regulation of the immune system and the resolution of inflammation. Lipid metabolism is strongly activated upon SARS-CoV-2 infection, however the modulating effects of oxylipins induced by different variants remain unexplored. Here, we compare the plasma profiles of thirty-seven oxylipins and four PUFAs in subjects infected with Wild-type, Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. The results suggest that oxidative stress and inflammation resulting from COVID-19 were highly dependent on the SARS-CoV-2 variant, and that the Wild-type elicited the strongest inflammatory storm. The Alpha and Delta variants induced a comparable lipid profile alteration upon infection, which differed significantly from Omicron. The latter variant increased the levels of pro-inflammatory mediators and decreased the levels of omega-3 PUFA in infected patients. We speculate that changes in therapeutics, vaccination, and prior infections may have a role in the alteration of the oxylipin profile besides viral mutations. The results shed new light on the evolution of the inflammatory response in COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Oxilipinas , Ácidos Graxos Insaturados , Inflamação
3.
Mar Drugs ; 21(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976185

RESUMO

Microalgae are photosynthetic microscopic organisms that serve as the primary food source in aquatic environments. Microalgae can synthesize a wide variety of molecules, such as polyunsaturated fatty acids (PUFAs) of the omega-3 and omega-6 series. Oxidative degradation of PUFA due to radical and/or enzymatic conversion leads to the formation of oxylipins, which are compounds known for their bioactive properties. In the present study, we aim to profile oxylipins from five microalgae species grown in 10-L photo-bioreactors under optimal conditions. During their exponential phase, microalgae were harvested, extracted and analyzed by LC-MS/MS to determine the qualitative and quantitative profile of oxylipins for each species. The five different selected microalgae revealed a high diversity of metabolites, up to 33 non-enzymatic and 24 enzymatic oxylipins present in different concentrations. Taken together, these findings highlight an interesting role of marine microalgae as a source of bioactive lipids mediators, which we hypothesize have an important function in preventive health measures such as amelioration of inflammation. The rich mixture of oxylipins may display advantages to biological organisms, especially by providing for human health benefits including antioxidant, anti-inflammatory, neuroprotective or immunomodulator activities. Some oxylipins are also well known for their cardiovascular properties.


Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Humanos , Oxilipinas/metabolismo , Microalgas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/metabolismo , Suplementos Nutricionais
4.
Anal Chem ; 94(42): 14618-14626, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219822

RESUMO

Octadecanoids are broadly defined as oxylipins (i.e., lipid mediators) derived from 18-carbon fatty acids. In contrast to the well-studied eicosanoids, there is a lack of analytical methods for octadecanoids, hampering further investigations in the field. We developed an integrated workflow combining chiral separation by supercritical fluid chromatography (SFC) and reversed-phase liquid chromatography (LC) coupled to tandem mass spectrometry detection for quantification of a broad panel of octadecanoids. The platform includes 70 custom-synthesized analytical and internal standards to extend the coverage of the octadecanoid synthetic pathways. A total of 103 octadecanoids could be separated by chiral SFC and complex enantioseparations could be performed in <13 min, while the achiral LC method separated 67 octadecanoids in 13.5 min. The LC method provided a robust complementary approach with greater sensitivity relative to the SFC method. Both methods were validated in solvent and surrogate matrix in terms of linearity, lower limits of quantification (LLOQ), recovery, accuracy, precision, and matrix effects. Instrumental linearity was good for both methods (R2 > 0.995) and LLOQ ranged from 0.03 to 6.00 ng/mL for SFC and 0.01 to 1.25 ng/mL for LC. The average accuracy in the solvent and surrogate matrix ranged from 89 to 109% in SFC and from 106 to 220% in LC, whereas coefficients of variation (CV) were <14% (at medium and high concentrations) and 26% (at low concentrations). Validation in the surrogate matrix showed negligible matrix effects (<16% for all analytes), and average recoveries ranged from 71 to 83%. The combined methods provide a platform to investigate the biological activity of octadecanoids and expand our understanding of these little-studied compounds.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa , Oxilipinas , Solventes , Carbono
5.
Eur J Nutr ; 60(4): 2013-2027, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32989473

RESUMO

PURPOSE: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a large family of endogenous bioactive lipids. To date, most of the studied FAHFAs are branched regioisomers of Palmitic Acid Hydroxyl Stearic Acid (PAHSA) that were reported to possess anti-diabetic and anti-inflammatory activity in humans and rodents. Recently, we have demonstrated that 9-PAHPA or 9-OAHPA intake increased basal metabolism and enhanced insulin sensitivity in healthy control diet-fed mice but induced liver damage in some mice. The present work aims to explore whether a long-term intake of 9-PAHPA or 9-OAHPA may have similar effects in obesogenic diet-fed mice. METHODS: C57Bl6 mice were fed with a control or high fat-high sugar (HFHS) diets for 12 weeks. The HFHS diet was supplemented or not with 9-PAHPA or 9-OAHPA. Whole-body metabolism was explored. Glucose and lipid metabolism as well as mitochondrial activity and oxidative stress status were analyzed. RESULTS: As expected, the intake of HFHS diet led to obesity and lower insulin sensitivity with minor effects on liver parameters. The long-term intake of 9-PAHPA or 9-OAHPA modulated favorably the basal metabolism and improved insulin sensitivity as measured by insulin tolerance test. On the contrary to what we have reported previously in healthy mice, no marked effect for these FAHFAs was observed on liver metabolism of obese diabetic mice. CONCLUSION: This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Animais , Metabolismo Basal , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Prostaglandins Other Lipid Mediat ; 146: 106386, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698142

RESUMO

BACKGROUND: Acute kidney injury (AKI) is an important complication after major surgery and solid organ transplantation. Here, we present a dietary omega-3 polyunsaturated fatty acid (n3-PUFA) supplementation study to investigate whether pre-treatment can reduce ischemia induced AKI in mice. METHODS: Male 12-14 week old C57BL/6 J mice received a linoleic acid rich sunflower oil based standard diet containing 10 % fat (STD) or the same diet enriched with n3-PUFA (containing 1 % EPA and 1 % DHA) (STD + n3). After 14 days of feeding bilateral 30 min renal ischemia reperfusion injury (IRI) was conducted to induce AKI and mice were sacrificed at 24 h. Serum creatinine and blood urea nitrogen (BUN) as well as liver enzyme elevation were measured. Kidney damage was analyzed by histology and immunohistochemistry. Furthermore, pro-inflammatory cytokines (IL-6, MCP-1) were determined by qPCR. FA and oxylipin pattern were quantified in blood and kidneys by GC-FID and LC-MS/MS, respectively. RESULTS: n3-PUFA supplementation prior to renal IRI increased systemic and renal levels of n3-PUFA. Consistently, eicosanoids and other oxylipins derived from n3-PUFA including precursors of specialized pro-resolving mediators were elevated while n6-PUFA derived mediators such as pro-inflammatory prostaglandins were decreased. Feeding of n3-PUFA did not attenuate renal function impairment, morphological renal damage and inflammation characterized by IL-6 and MCP-1 elevation or neutrophil infiltration. However, the tubular transport marker alpha-1 microglobulin (A1M) was significantly higher expressed in proximal tubular epithelial cells of STD + n3 compared to STD fed mice. This indicates a better integrity of proximal tubular epithelial cells and thus significant protection of tubular function. In addition, heme oxygenase-1 (HO-1) which protects tubular function was also up-regulated in the treatment group receiving n3-PUFA supplemented chow. DISCUSSION: We showed that n3-PUFA pre-treatment did not affect overall renal function or renal inflammation in a mouse model of moderate ischemia induced AKI, but tubular transport was improved. In conclusion, dietary n3-PUFA supplementation altered the oxylipin levels significantly but did not protect from renal function deterioration or attenuate ischemia induced renal inflammation.


Assuntos
Injúria Renal Aguda , Ácidos Graxos Ômega-3/farmacologia , Isquemia , Túbulos Renais , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Isquemia/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
7.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260741

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids reported to have antidiabetic and anti-inflammatory effects. Since skeletal muscle is a major target for insulin, the aim of this study is to explore for the first time the influence of several FAHFAs in C2C12 myoblasts and in skeletal muscle phenotype in mice. Here, we show that eleven FAHFAs belonging to different families inhibit C2C12 myoblast proliferation. In addition, all FAHFAs decreased mitochondrial cytochrome c oxidase activity without affecting reactive oxygen species production and the mitochondrial network. During C2C12 myoblasts differentiation, we found that two of the most active lipids, 9-PAHPA and 9-OAHPA, did not significantly affect the fusion index and the expression of myosin heavy chains. However, we found that three months' intake of 9-PAHPA or 9-OAHPA in mice increased the expression of more oxidative myosin in skeletal muscle without affecting skeletal muscle mass, number, and mean fiber area, mitochondrial activity, and oxidative stress parameters. In conclusion, our study indicated that the eleven FAHFAs tested decreased the proliferation rate of C2C12 myoblasts, probably through the inhibition of mitochondrial activity. In addition, we found that 9-PAHPA or 9-OAHPA supplementation in mice induced a switch toward a more oxidative contractile phenotype of skeletal muscle. These data suggest that the increase in insulin sensitivity previously described for these two FAHFAs is of muscular origin.


Assuntos
Ésteres/farmacologia , Ácidos Graxos/farmacologia , Mioblastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ésteres/química , Ácidos Graxos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético , Oxirredução , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(2): 126-131, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29154942

RESUMO

To achieve optimal development of a newborn, breastfeeding is extensively recommended, but little is known about the role of non-nutritive bioactive milk components. We aimed to characterize the fatty acid esters of hydroxy fatty acids (FAHFAs), namely palmitic acid hydroxystearic acids (PAHSAs)-endogenous lipids with anti-inflammatory and anti-diabetic properties, in human breast milk. Breast milk samples from 30 lean (BMI=19-23) and 23 obese (BMI>30) women were collected 72h postpartum. Adipose tissue and milk samples were harvested from C57BL/6J mice. FAHFA lipid profiles were measured using reverse phase and chiral liquid chromatography-mass spectrometry method. PAHSA regioisomers as well as other FAHFAs were present in both human and murine milk. Unexpectedly, the levels of 5-PAHSA were higher relative to other regioisomers. The separation of both regioisomers and enantiomers of PAHSAs revealed that both R- and S-enantiomers were present in the biological samples, and that the majority of the 5-PAHSA signal is of R configuration. Total PAHSA levels were positively associated with weight gain during pregnancy, and 5-PAHSA as well as total PAHSA levels were significantly lower in the milk of the obese compared to the lean mothers. Our results document for the first time the presence of lipid mediators from the FAHFA family in breast milk, while giving an insight into the stereochemistry of PAHSAs. They also indicate the negative effect of obesity on 5-PAHSA levels. Future studies will be needed to explore the role and mechanism of action of FAHFAs in breast milk.


Assuntos
Leite Humano/metabolismo , Obesidade/metabolismo , Ácidos Palmíticos/metabolismo , Adulto , Animais , Estudos Transversais , Feminino , Humanos , Camundongos
9.
Chemistry ; 24(38): 9463-9476, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29566292

RESUMO

After a brief overview of the biological significance of FAHFAs, the present Minireview highlights the different strategies developed for their chemical syntheses. The term "FAHFAs" has been introduced in 2014 for fatty acyl esters of hydroxyl fatty acids, found in adipocytes, with antidiabetic properties. However, many other natural products contain this type of branched lipids in their structure. This review was then extended to the synthesis of these subunits, even though the length of the lipid chains and the location of the ester linkages are different, since the developed strategies may be applied to the synthesis of "FAHFA".


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Obesidade/tratamento farmacológico , Ésteres , Humanos
10.
Org Biomol Chem ; 14(38): 9012-20, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27603797

RESUMO

An efficient regiospecific total synthesis of several branched fatty acyl hydroxyl-fatty acids (FAHFA) has been achieved from available terminal alkenes and alkynes. The key steps feature a boron trifluoride mediated epoxide ring opening with acetylide carbanions, followed by hydrogenation of the alkyne function. The carboxylic acid of the hydroxylated chains is introduced at the last step of the synthesis to allow the esterification of the branched hydroxyl group by fatty acids beforehand. The chemical syntheses of a "linear" FAHFA and a branched FAHFA analog containing a Z-olefin in the hydroxyl-fatty acid chain are also reported. A LC-MS/MS method has been developed. Several reversed phase columns were compared. Regioisomers were separated.

11.
Anal Chem ; 87(10): 5036-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915161

RESUMO

Differential mobility spectrometry (DMS) is capable of separating stereoisomeric molecular ions based on their mobility in an oscillating electrical field with an asymmetric waveform. Thus, it is an "orthogonal" technique to chromatography and (tandem) mass spectrometry. Bioactive lipids, particularly of the eicosanoid and docosanoid class feature numerous stereoisomers, which exhibit a highly specific structure-activity relationship. Moreover, the geometry of these compounds also reflects their biochemical origin. Therefore, the unambiguous characterization of related isomers of the eicosanoid and docosanoid classes is of fundamental importance to the understanding of their origin and function in many biological processes. Here we show, that SelexION DMS technology coupled to µLC-MS/MS is capable of differentiating at least five closely related leukotrienes partially coeluting and (almost) unresolvable using LC-MS/MS only. We applied the developed method to the separation of LTB4 and its coeluting isomer 5S,12S-diHETE in murine peritoneal exudate cells, showing that LTB4 is present only after zymosan A injection while its isomer 5S,12S-diHETE is produced after saline (PBS) administration. Additionally, we show that the SelexION technology can also be applied to the separation of PD1 and PDX (10S,17S-diHDHA), two isomeric protectins.


Assuntos
Antígenos CD59/isolamento & purificação , Leucotrienos/isolamento & purificação , Análise Espectral/métodos , Animais , Antígenos CD59/química , Cromatografia Líquida , Isomerismo , Leucotrienos/química , Camundongos , Espectrometria de Massas em Tandem
12.
Chemistry ; 20(10): 2879-87, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24520010

RESUMO

A versatile strategy featuring a Colvin rearrangement, hydrozirconation, a Sonogashira cross-coupling reaction and a Z-selective Wittig olefination, was successfully developed for the construction of a conjugated E,E,Z-triene subunit, flanked on both sides by two Z-allylic hydroxyl groups. This chemical pattern is found in many endogenous lipid metabolites such as maresin 1 (MaR1), neuroprotectin D1 (NPD1), and its aspirin triggered-isomer AT-NPD1, which not only counter-regulate inflammation but also actively orchestrate (at nanomolar doses) the resolution and termination program of acute inflammation while promoting wound healing, return to homeostasis and neuroprotection. Unlike previous approaches, the advantages of the present strategy are obvious, as it allows us to modify the nonpolar tail, the carboxylated head or both ends of the molecule without repeating the whole synthetic sequence (about 26-34 steps according to the literature). Thus, the first total syntheses of NPD1 methyl ester epimer (which can also be considered as an enantiomer of AT-NPD1) and its n-3 docosapentaenoic acid derived analogue were achieved from a highly functionalized and late advanced pivotal intermediate. This innovative route may be easily adapted to gain access to other dihydroxylated metabolites and analogues of polyunsaturated fatty acids containing a conjugated E,E,Z-triene subunit. Different epimers/diastereoisomers may be obtained by purchasing the suitable optically pure (S)- and/or (R)-1,2,4-butanetriol(s) as a chiral pool for both stereogenic centers.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/síntese química , Ácidos Graxos Insaturados/síntese química , Lipídeos/química , Animais , Química Farmacêutica , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Camundongos , Estrutura Molecular , Estereoisomerismo
13.
J Org Chem ; 79(6): 2657-65, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24571431

RESUMO

The first total synthesis of three omega-6 dihydroxylated (E,E,Z)-docosatrienes has been successfully achieved employing a flexible strategy. The key features encompass a Boland semireduction, to create the (E,E,Z)-triene via an (E,E)-ynediene, and a selective deprotection of a tris(tert-butyldimethylsilyl) ether. The main advantage of the present strategy over previous syntheses of noncyclic dihydroxylated PUFA metabolites derived from docosahexaenoic and arachidonic acids comes from the introduction of the polar head chain at the very end of the synthesis from an advanced, pivotal aldehyde. In terms of divergency this enables late-stage modification of the head group.


Assuntos
Ácidos Araquidônicos/química , Ácidos Docosa-Hexaenoicos/síntese química , Ácidos Graxos Insaturados/química , Ácidos Docosa-Hexaenoicos/química , Estrutura Molecular , Estereoisomerismo
14.
Cells ; 12(3)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36766790

RESUMO

Obesity is a complex disease highly related to diet and lifestyle and is associated with low amount of thermogenic adipocytes. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to fight overweight and associated comorbidities. Recent studies suggest a role for several fatty acids and their metabolites, called lipokines, in the control of thermogenesis. The purpose of this work was to analyze the role of several lipokines in the control of brown/brite adipocyte formation. We used a validated human adipocyte model, human multipotent adipose-derived stem cell model (hMADS). In the absence of rosiglitazone, hMADS cells differentiate into white adipocytes, but convert into brite adipocytes upon rosiglitazone or prostacyclin 2 (PGI2) treatment. Gene expression was quantified using RT-qPCR and protein levels were assessed by Western blotting. We show here that lipokines such as 12,13-diHOME, 12-HEPE, 15dPGJ2 and 15dPGJ3 were not able to induce browning of white hMADS adipocytes. However, both fatty acid esters of hydroxy fatty acids (FAHFAs), 9-PAHPA and 9-PAHSA potentiated brown key marker UCP1 mRNA levels. Interestingly, CTA2, the stable analog of thromboxane A2 (TXA2), but not its inactive metabolite TXB2, inhibited the rosiglitazone and PGI2-induced browning of hMADS adipocytes. These results pinpoint TXA2 as a lipokine inhibiting brown adipocyte formation that is antagonized by PGI2. Our data open new horizons in the development of potential therapies based on the control of thromboxane A2/prostacyclin balance to combat obesity and associated metabolic disorders.


Assuntos
Ácidos Graxos , Tromboxano A2 , Humanos , Tromboxano A2/metabolismo , Rosiglitazona/farmacologia , Ácidos Graxos/metabolismo , Adipócitos Marrons/metabolismo , Obesidade/metabolismo , Prostaglandinas I/metabolismo
15.
Free Radic Biol Med ; 201: 55-65, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940734

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of premature death and disability in humans and their incidence continues to increase. Oxidative stress and inflammation have been recognized as key pathophysiological factors in cardiovascular events. The targeted modulation of the endogenous mechanisms of inflammation, rather than its simple suppression, will become key in treating chronic inflammatory diseases. A comprehensive characterization of the signalling molecules involved in inflammation, such as endogenous lipid mediators, is thus needed. Here, we propose a powerful MS-based platform for the simultaneous quantitation of sixty salivary lipid mediators in CVD samples. Saliva, which represents a non-invasive and painless alternative to blood, was collected from patients suffering from acute and chronic heart failure (AHF and CHF, respectively), obesity and hypertension. Of all the patients, those with AHF and hypertension showed higher levels of isoprostanoids, which are key indexes of oxidant insult. Compared to the obese population, AHF patients showed lower levels (p < 0.02) of antioxidant omega-3 fatty acids, in line with the "malnutrition-inflammation complex syndrome" typical of HF patients. At hospital admission, AHF patients showed significantly higher levels (p < 0.001) of omega-3 DPA and lower levels (p < 0.04) of lipoxin B4 than CHF patients, suggesting a lipid rearrangement typical of the failing heart during acute decompensation. If confirmed, our results highlight the potential use of lipid mediators as predictive markers of re-acutisation episodes, thus providing opportunities for preventive intervention and a reduction in hospitalizations.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Insuficiência Cardíaca , Hipertensão , Humanos , Inflamação , Doença Crônica , Obesidade , Mediadores da Inflamação
16.
J Nutr Biochem ; 112: 109216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36372312

RESUMO

Branched fatty acid esters of hydroxy fatty acids are endogenous lipids reported to have antidiabetic and anti-inflammatory effects. Recently, we showed that 9-palmitic acid esters of hydroxypalmitic acid (9-PAHPA) and 9-oleic acid esters of hydroxypalmitic acid increased insulin sensitivity in mice when incorporated to a chow diet or to a high fat and high sucrose diet. However, preventive supplementation with 9-PAHPA and 9-oleic acid esters of hydroxypalmitic acid in high fat and high sucrose diet mice did not impair significant weight gain or the development of hyperglycemia. The aim of this work was therefore to study whether in two animal models of obesity, namely the classical diet-induced obesity (DIO) and the db/db mice, 9-PAHPA may have beneficial effects against obesity and liver and skeletal muscle metabolic dysfunction. In DIO mice, we observed that 9-PAHPA increased body weight and fat mass. In line with this observation, we found that 9-PAHPA supplementation decreased energy expenditure. In liver and in skeletal muscle, mitochondrial activities and oxidative stress parameters were not modified by 9-PAHPA supplementation. In db/db mice, 9-PAHPA had no effect on the dramatic weight gain and hyperglycemia. In addition, 9-PAHPA supplementation did not correct either the hepatomegaly and hepatic steatosis or the severe muscle atrophy recorded compared with db/+ animals. Likewise, supplementation with 9-PAHPA did not impact the different metabolic parameters analyzed, either in the liver or in the skeletal muscles. However, it decreased insulin resistance in DIO and db/db mice. In conclusion, our study indicated that a long-term intake of 9-PAHPA in DIO and db/db mice improved insulin sensitivity but had only few effects on obesity and associated metabolic disorders.


Assuntos
Hiperglicemia , Resistência à Insulina , Doenças Metabólicas , Camundongos , Animais , Obesidade/metabolismo , Dieta , Fígado/metabolismo , Aumento de Peso , Camundongos Endogâmicos , Ácidos Graxos/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Sacarose/metabolismo , Hiperglicemia/metabolismo , Ácidos Oleicos/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
17.
Food Chem ; 388: 132983, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35486985

RESUMO

Breast milk is a complex mixture containing underexplored bioactive lipids. We performed an observational case-control study to compare the impact of delivery mode: caesarean section (CS) and vaginal birth (VB); and term (preterm and term delivery) on the levels of lipokines in human milk at different stages of lactation. Metabolomic analysis of the milk identified triacylglycerol estolides as a metabolic reservoir of the anti-inflammatory lipid mediator 5-palmitic acid ester of hydroxystearic acid (5-PAHSA). We found that triacylglycerol estolides were substrates of carboxyl ester lipase and 5-PAHSA-containing lipids were the least preferred substrates among tested triacylglycerol estolide isomers. This explained exceptionally high colostrum levels of 5-PAHSA in the VB group. CS and preterm birth negatively affected colostrum lipidome, including 5-PAHSA levels, but the lipidomic profiles normalized in mature milk. Mothers delivering term babies vaginally produce colostrum rich in 5-PAHSA, which could contribute to the prevention of intestinal inflammation in newborns.


Assuntos
Leite Humano , Nascimento Prematuro , Estudos de Casos e Controles , Cesárea , Colostro/metabolismo , Ésteres/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Lactação , Lipase/metabolismo , Leite Humano/metabolismo , Ácido Palmítico/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Triglicerídeos/metabolismo
18.
Eur J Med Chem ; 231: 114157, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131536

RESUMO

Alpha-linolenic acid (ALA), an essential omega-3 polyunsaturated fatty acid found in plants, exerts neuroprotection and anti-inflammatory effects in chronic and acute CNS disease models. However, the underlying mechanisms are not yet understood. Since ALA is not incorporated into the brain, the observed health benefits may result from some of its metabolites. The putative formation of dihydroxylated ALA derivatives (called linotrins) was recently shown in vitro in the presence of lipoxygenases. However, the in vitro biosynthesis of linotrins was neither stereoselective nor quantitatively efficient for studying their physiological roles as enantiomeric pure forms. Herein, we report the first stereo-controlled synthesis that features regio- and stereoselective hydrometalations of alkynes for assembling the sensitive E,Z,E-conjugated trienes, as well as LC-MS investigations that provide evidence of linotrins occurrence in plants. Moreover, strong anti-inflammatory effects on microglia highlight the potential physiological importance of linotrins and open new perspectives in search of CNS therapeutics.


Assuntos
Microglia , Oxilipinas , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/farmacologia
19.
Free Radic Biol Med ; 192: 200-212, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162743

RESUMO

In response to wound signals, macrophages are immediately recruited to the injury where they acquire distinct phenotypes and functions, playing crucial roles both in host defense and healing process. Although macrophage phenotypes have been intensively studied during wound healing, mostly using markers and expression profiles, the impact of the wound environment on macrophage shape and behaviour, and the underlying mechanisms deserve more in-depth investigation. Here, we sought to characterize the dynamics of macrophage recruitment and behaviour during aseptic wounding of the caudal fin fold of the zebrafish larva. Using a photo-conversion approach, we demonstrated that macrophages are recruited to the wounded fin fold as a single wave where they switch their phenotype. Intravital imaging of macrophage shape and trajectories revealed that wound-macrophages display a highly stereotypical set of behaviours and change their shape from amoeboid to elongated shape as wound healing proceeds. Using a pharmacological inhibitor of 15-lipoxygenase and protectin D1, a specialized pro-resolving lipid, we investigated the role of polyunsaturated fatty acid metabolism in macrophage behaviour. While inhibition of 15-lipoxygenase using PD146176 or Nordihydroguaiaretic acid (NDGA) decreases the switch from amoeboid to elongated shape, protectin D1 accelerates macrophage reverse migration and favours elongated morphologies. Altogether, our findings suggest that individual macrophages at the wound switch their phenotype leading to important changes in behaviour and shape to adapt to changing environment, and highlight the crucial role of lipid metabolism in the control of macrophage behaviour plasticity during inflammation in vivo.


Assuntos
Araquidonato 15-Lipoxigenase , Peixe-Zebra , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Macrófagos/metabolismo , Masoprocol/metabolismo , Cicatrização/genética
20.
Prog Lipid Res ; 86: 101165, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508275

RESUMO

Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Eicosanoides , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Oxilipinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA