Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomarkers ; 29(5): 324-339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38808385

RESUMO

BACKGROUND: The transcription factor SALL4 is associated with embryonic pluripotency and has proposed as a novel immunohistochemistry (IHC) marker for diagnosing germ cell tumours. SALL4 comprises three isoforms, and SALL4-A being the full-length isoform. Studying its isoforms could revolutionize testicular cancer prognosis and subtype differentiation. METHODS: The expression and clinical significance of isoform 'A' of SALL4 was evaluated in 124 testicular germ cell tumours (TGCTs) subtypes, adjacent 67 normal tissues and 22 benign tumours, using immunohistochemistry on tissue microarrays (TMA). RESULTS: A statistically significant higher expression of nuclear and cytoplasmic SALL4-A was detected in TGCTs histological subtypes and benign tumours compared to the normal tissues. Seminoma and yolk sac tumours had the highest nuclear and cytoplasmic expression of SALL4-A. A significant correlation was detected between the higher nuclear expression of SALL4-A and increased pT stages (P = 0.026) in seminomas. Whereas in embryonal carcinomas, cytoplasmic expression of SALL4-A was associated with the tumour recurrence (P = 0.04) and invasion of the epididymis (P = 0.011). CONCLUSIONS: SALL4-A isoform expression in the cytoplasm and nucleus of TGCTs may be associated with histological differentiation. In the seminoma subtype of TGCTs, higher expression of SALL4-A may be used as a predictive indicator of poorer outcomes and prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias Embrionárias de Células Germinativas , Isoformas de Proteínas , Neoplasias Testiculares , Fatores de Transcrição , Humanos , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Masculino , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Biomarcadores Tumorais/metabolismo , Prognóstico , Progressão da Doença , Imuno-Histoquímica , Seminoma/metabolismo , Seminoma/patologia , Adulto , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Análise Serial de Tecidos
2.
Andrologia ; 54(11): e14608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229227

RESUMO

SALL4 transcription factor plays an important role to maintain the pluripotent and self-renewal of embryonic stem cells. It contributes to the growth of many cancers and embryonic development. With the exception of spermatogonia, SALL4 expression is silenced in most adult tissues after birth; nevertheless, it is re-expressed in a subset of different solid malignancies. SALL4 is a new, precise biomarker for testicular germ cell cancers that was just introduced. The whole isoform of SALL4 is called SALL4-A. Regarding the lack of antibody against human SALL4 isoforms, the pattern of expression, the role of each isoform remain unknown. Furthermore, in isoform specific evaluations, we aimed, for the first time, to produce and characterize mAb against human SALL4-A. Immunization of mice were performed with a selected 33-mer synthetic peptide of SALL4-A conjugated with KLH. Hybridoma cells were screened by ELISA for positive reactivity with SALL4-A peptide. From the ascites fluid of mice that had been injected with hybridoma cells, anti-SALL4-A mAbs were isolated using a protein G column. Reactivity of the mAbs was evaluated using the peptide and SALL4-A recombinant protein by ELISA and IHC on testicular cancer tissue as positive control, and normal kidney, stomach and prostate tissues as negative control. The produced mAb could well detect SALL4-A in testicular cancer tissues using IHC, while the reactivity was negative in normal kidney, stomach and prostate tissues. Using ELISA, the mAb affinity for the peptide and SALL4-A recombinant protein was assessed, and it was shown to be reasonably high. The mAb detected SALL4-A in nucleus and cytoplasm of several cancer cells and spermatogonia in testicular cancer tissue. In addition, it could recognize SALL4-A recombinant protein. Our produced monoclonal antibody against isoform-A of human SALL4 can specifically recognize SALL4-A using either IHC or ELISA. We hope that this mAb could help researchers in isoform-specific study of human SALL4.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Adulto , Humanos , Camundongos , Animais , Neoplasias Testiculares/diagnóstico , Anticorpos Monoclonais , Isoformas de Proteínas , Biomarcadores , Peptídeos , Proteínas Recombinantes , Fatores de Transcrição
3.
Avicenna J Med Biotechnol ; 7(1): 2-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926946

RESUMO

BACKGROUND: Prostate Specific Antigen (PSA) is an important laboratory marker for diagnosis of prostatic cancer. Thus, development of diagnostic tools specific for PSA plays an important role in screening, monitoring and early diagnosis of prostate cancer. In this paper, the production and characterization of a panel of murine monoclonal antibodies (mAbs) against PSA have been presented. METHODS: Balb/c mice were immunized with PSA, which was purified from seminal plasma. Splenocytes of hyperimmunized mice were extracted and fused with Sp2/0 cells. By adding selective HAT medium, hybridoma cells were established and positive clones were selected by ELISA after four times of cloning. The isotypes of produced mAbs were determined by ELISA and then purified from ascitic fluids using Hi-Trap protein G column. The reactivities of the mAbs were examined with the purified PSA and seminal plasma by ELISA and western blot techniques. Furthermore, the reactivities of the mAbs were assessed in Prostate Cancer (PCa), Benign Prostatic Hyperplasia (BPH) and brain cancer tissues by Immunohistochemistry (IHC). RESULTS: Five anti-PSA mAbs (clones: 2G2-B2, 2F9-F4, 2D6-E8, IgG1/К) and clones (2C8-E9, 2G3-E2, IgG2a/К) were produced and characterized. All mAbs, except 2F9-F4 detected the expression of PSA in PCa and BPH tissues and none of them reacted with PSA in brain cancer tissue in IHC. Besides, all mAbs could detect a protein band around 33 kDa in human seminal plasma in western blot. CONCLUSION: These mAbs can specifically recognize PSA and may serve as a component of PSA diagnostic kit in various biological fluids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA