Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 21(1): 103, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488209

RESUMO

BACKGROUND: Solid tumors produce proteins that can induce the accumulation of bone marrow-derived cells in various tissues, and these cells can enhance metastatic tumor growth by several mechanisms. 4T1 murine mammary tumors are known to produce granulocyte colony-stimulating factor (G-CSF) and increase the numbers of immunosuppressive CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) in tissues such as the spleen and lungs of tumor-bearing mice. While surgical resection of primary tumors decreases MDSC levels in the spleen, the longevity and impact of MDSCs and other immune cells in the lungs after tumor resection have been less studied. METHODS: We used mass cytometry time of flight (CyTOF) and flow cytometry to quantify MDSCs in the spleen, peripheral blood, and lungs of mice bearing orthotopic murine mammary tumors. We also tested the effect of primary tumor resection and/or gemcitabine treatment on the levels of MDSCs, other immune suppressor and effector cells, and metastatic tumor cells in the lungs. RESULTS: We have found that, similar to mice with 4T1 tumors, mice bearing metastatic 4T07 tumors also exhibit accumulation of CD11b+Gr1+ MDSCs in the spleen and lungs, while tissues of mice with non-metastatic 67NR tumors do not contain MDSCs. Mice with orthotopically implanted 4T1 tumors have increased granulocytic (G-) MDSCs, monocytic (M-) MDSCs, macrophages, eosinophils, and NK cells in the lungs. Resection of primary 4T1 tumors decreases G-MDSCs, M-MDSCs, and macrophages in the lungs within 48 h, but significant numbers of functional immunosuppressive G-MDSCs persist in the lungs for 2 weeks after tumor resection, indicative of an environment that can promote metastatic tumor growth. The chemotherapeutic agent gemcitabine depletes G-MDSCs, M-MDSCs, macrophages, and eosinophils in the lungs of 4T1 tumor-bearing mice, and we found that treating mice with gemcitabine after primary tumor resection decreases residual G-MDSCs in the lungs and decreases subsequent metastatic growth. CONCLUSIONS: Our data support the development of therapeutic strategies to target MDSCs and to monitor MDSC levels before and after primary tumor resection to enhance the effectiveness of immune-based therapies and improve the treatment of metastatic breast cancer in the clinic.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Neoplasias Mamárias Experimentais/patologia , Mastectomia , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Eosinófilos/patologia , Feminino , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/imunologia , Gencitabina
2.
Int J Cancer ; 139(6): 1372-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27136745

RESUMO

Acid ceramidase has been identified as a promising target for cancer therapy. One of its most effective inhibitors, LCL521, was examined as adjuvant to photodynamic therapy (PDT) using mouse squamous cell carcinoma SCCVII model of head and neck cancer. Lethal effects of PDT, assessed by colony forming ability of in vitro treated SCCVII cells, were greatly enhanced when combined with 10 µM LCL521 treatment particularly when preceding PDT. When PDT-treated SCCVII cells are used to vaccinate SCCVII tumor-bearing mice (PDT vaccine protocol), adjuvant LCL521 treatment (75 mg/kg) resulted in a marked retardation of tumor growth. This effect can be attributed to the capacity of LCL521 to effectively restrict the activity of two main immunoregulatory cell populations (Tregs and myeloid-derived suppressor cells, MDSCs) that are known to hinder the efficacy of PDT vaccines. The therapeutic benefit with adjuvant LCL521 was also achieved with SCCVII tumors treated with standard PDT when using immunocompetent mice but not with immunodeficient hosts. The interaction of LCL521 with PDT-based antitumor mechanisms is dominated by immune system contribution that includes overriding the effects of immunoregulatory cells, but could also include a tacit contribution from boosting direct tumor cell kill.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Vacinas Anticâncer , Inibidores Enzimáticos/farmacologia , Fotoquimioterapia , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Humanos , Imunomodulação , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
3.
J Immunol ; 192(1): 512-22, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24285836

RESUMO

Myeloid-derived suppressor cells (MDSCs) are emerging as potential promoters of metastatic tumor growth, and there is interest in targeting immature MDSCs by inducing their differentiation into more mature myeloid cells. We used all-trans retinoic acid (ATRA) to differentiate MDSCs in mice bearing metastatic 4T1 or 4TO7 murine mammary tumors, and assessed the immune-suppressive mechanisms and potencies of different myeloid cell subpopulations. Metastatic mammary tumors induced the accumulation of distinct populations of immature CD11b(+)Gr1(+)F4/80(-)Ly6C(mid)Ly6G(+) MDSCs ("Gr1(+) cells") and mature CD11b(+)Gr1(-)F4/80(+) cells ("F4/80(+) cells") in metastatic target organs. ATRA triggered the differentiation of Gr1(+) cells into F4/80(+) cells in the lungs and, unexpectedly, enhanced pulmonary metastatic tumor growth. We found that F4/80(+)Ly6C(-)Ly6G(-) mature macrophages (Ms) were up to 30-fold more potent immune suppressors than Gr1(+) cells on a per-cell basis, which we postulate may contribute to the increased metastatic growth observed with ATRA treatment. F4/80(+) cells and Gr1(+) cells used different reactive oxygen species (ROS)-mediated mechanisms of immunosuppression ex vivo, with F4/80(+) cells producing higher levels of ROS, which is consistent with their superior immunosuppressive abilities. These data highlight the potent immunosuppressive functions of Ms, reveal that Ms can suppress T cell responses via ROS production, and suggest that ROS inhibitors may be useful in promoting antitumor immune responses. Our findings also caution against using ATRA to modulate myeloid cell differentiation and function to treat breast cancer metastases in the lung, and support the development of therapeutic strategies to enhance antitumor immunity by targeting myeloid cells as a collective group.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Macrófagos/imunologia , Células Mieloides/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Imunofenotipagem , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Metástase Neoplásica , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tretinoína/farmacologia
4.
Int J Mol Sci ; 16(11): 27005-14, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26569233

RESUMO

Photodynamic therapy (PDT)-generated cancer vaccine represents an attractive potential application of PDT, therapeutic modality destroying targeted lesions by localized photooxidative stress. Since immunoregulatory cell activity has become recognized as a major obstacle to effective cancer immunotherapy, the present study examined their participation in the therapeutic effect of PDT cancer vaccine. Following protocols from previous studies, mouse with squamous cell carcinoma SCCVII tumors were vaccinated by SCCVII cells treated by PDT and response monitored by tumor size measurement. The effects of low-dose cyclophosphamide (50 mg/kg) and all-trans retinoic acid (ATRA) on the numbers of Tregs and myeloid-derived suppressor cells (MDSCs) were determined by antibody staining followed by flow cytometry, while their impact on PDT vaccine therapy was evaluated by monitoring changes in tumor responses. Cyclophosphamide effectively reduced the numbers of Tregs, which became elevated following PDT vaccine treatment, and this resulted in an increase in the vaccine's effectiveness. A similar benefit for the therapy outcome with PDT vaccine was attained by ATRA treatment. The activities of Tregs and MDSCs thus have a critical impact on therapy outcome with PDT vaccine and reducing their numbers substantially improves the vaccine's effectiveness.


Assuntos
Vacinas Anticâncer/imunologia , Imunomodulação , Imunoterapia , Neoplasias/imunologia , Fotoquimioterapia , Animais , Antineoplásicos Alquilantes/administração & dosagem , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Ciclofosfamida/administração & dosagem , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Fotoquimioterapia/métodos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
DNA Repair (Amst) ; 139: 103689, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749239

RESUMO

The effectiveness of radiotherapy depends on the sensitivities of 'normal' and cancer cells to the administered radiation dose. Increasing the radiosensitivity of cancers by inhibiting DNA damage repair is a goal of much current research, however success depends on avoiding concomitant sensitization of normal tissues inevitably irradiated during therapy. In this study we investigated the mechanisms of radiosensitization for DNA-PK and PARP inhibitors by examining the impacts on proliferating vs quiescent cell populations. Experiments were performed in BRCA1/2null and wild-type parental cancer models in vitro and in vivo. Overall AZD7648 has greater radiosensitizing activity relative to Olaparib, with BRCA2-deficient models showing the greatest sensitivity. However, DNA-PK inhibitor AZD7648 also produced greater toxicity in all irradiated mice. While both DNA-PK and PARP inhibition sensitizes wild type tumor cells to radiation, in BRCA1/2 deficient cells PARP inhibition by Olaparib had limited radiosensitization capacity. Quiescent cells are more radioresistant than proliferating cells, and these were also effectively sensitized by AZD7648 while Olaparib was unable to increase radiation-induced cell kill, even in BRCA1/2null cells. These findings underscore the distinct mechanisms of radiosensitization for DNA-PK and PARP inhibitors. While DNA-PK inhibitors are able to target both proliferating and non-proliferating tumor cells for greater overall anti-cancer benefit, their application is limited by exacerbation of normal tissue toxicities. Conversely, PARP inhibitors exhibit selective activity for proliferating cells, providing a mechanism for targeting activity to cancers, but due to poor activity in non-proliferating cells they have an overall reduced impact on tumor growth control. This study highlights the importance of creating a therapeutic ratio with DNA damage repair inhibition radiation sensitizing strategies.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Proteína Quinase Ativada por DNA , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Radiossensibilizantes , Ftalazinas/farmacologia , Piperazinas/farmacologia , Radiossensibilizantes/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Humanos , Proteína BRCA1/metabolismo , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Camundongos , Linhagem Celular Tumoral , Feminino , Proteína BRCA2/genética , Proliferação de Células/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer Ther ; 23(9): 1230-1240, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781104

RESUMO

Inhibitors of DNA-dependent protein kinase (PRKDC; DNA-PK) sensitize cancers to radiotherapy and DNA-damaging chemotherapies, with candidates in clinical trials. However, the degree to which DNA-PK inhibitors also sensitize normal tissues remains poorly characterized. In this study, we compare tumor growth control and normal tissue sensitization following DNA-PK inhibitors in combination with radiation and etoposide. FaDu tumor xenografts implanted in mice were treated with 10 to 15 Gy irradiation ± 3 to 100 mg/kg AZD7648. A dose-dependent increase in time to tumor volume doubling following AZD7648 was proportional to an increase in toxicity scores of the overlying skin. Similar effects were seen in the intestinal jejunum, tongue, and FaDu tumor xenografts of mice assessed for proliferation rates at 3.5 days after treatment with etoposide or 5 Gy whole body irradiation ± DNA-PK inhibitors AZD7648 or peposertib (M3814). Additional organs were examined for sensitivity to DNA-PK inhibitor activity in ATM-deficient mice, where DNA-PK activity is indicated by surrogate marker γH2AX. Inhibition was observed in the heart, brain, pancreas, thymus, tongue, and salivary glands of ATM-deficient mice treated with the DNA-PK inhibitors relative to radiation alone. Similar reductions are also seen in ATM-deficient FaDu tumor xenografts where both pDNA-PK and γH2AX staining could be performed. DNA-PK inhibitor-mediated sensitization to radiation and DNA-damaging chemotherapy are not only limited to tumor tissues, but also extends to normal tissues sustaining DNA damage. These data are useful for interpretation of the sensitizing effects of DNA damage repair inhibitors, where a therapeutic index showing greater cell-killing effects on cancer cells is crucial for optimal clinical translation.


Assuntos
Proteína Quinase Ativada por DNA , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Humanos , Camundongos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Etoposídeo/farmacologia , Radiossensibilizantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/efeitos da radiação
7.
Radiother Oncol ; 196: 110326, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38735536

RESUMO

PURPOSE: The oxygen depletion hypothesis has been proposed as a rationale to explain the observed phenomenon of FLASH-radiotherapy (FLASH-RT) sparing normal tissues while simultaneously maintaining tumor control. In this study we examined the distribution of DNA Damage Response (DDR) markers in irradiated 3D multicellular spheroids to explore the relationship between FLASH-RT protection and radiolytic-oxygen-consumption (ROC) in tissues. METHODS: Studies were performed using a Varian Truebeam linear accelerator delivering 10 MeV electrons with an average dose rate above 50 Gy/s. Irradiations were carried out on 3D spheroids maintained under a range of O2 and temperature conditions to control O2 consumption and create gradients representative of in vivo tissues. RESULTS: Staining for pDNA-PK (Ser2056) produced a linear radiation dose response whereas γH2AX (Ser139) showed saturation with increasing dose. Using the pDNA-PK staining, radiation response was then characterised for FLASH compared to standard-dose-rates as a function of depth into the spheroids. At 4 °C, chosen to minimize the development of metabolic oxygen gradients within the tissues, FLASH protection could be observed at all distances under oxygen conditions of 0.3-1 % O2. Whereas at 37 °C a FLASH-protective effect was limited to the outer cell layers of tissues, an effect only observed at 3 % O2. Modelling of changes in the pDNA-PK-based oxygen enhancement ratio (OER) yielded a tissue ROC g0-value estimate of 0.73 ± 0.25 µM/Gy with a km of 5.4 µM at FLASH dose rates. CONCLUSIONS: DNA damage response markers are sensitive to the effects of transient oxygen depletion during FLASH radiotherapy. Findings support the rationale that well-oxygenated tissues would benefit more from FLASH-dose-rate protection relative to poorly-oxygenated tissues.


Assuntos
Dano ao DNA , Esferoides Celulares , Dano ao DNA/efeitos da radiação , Humanos , Esferoides Celulares/efeitos da radiação , Histonas/metabolismo , Histonas/análise , Consumo de Oxigênio/efeitos da radiação , Relação Dose-Resposta à Radiação , Tratamentos com Preservação do Órgão/métodos
8.
Radiother Oncol ; 187: 109795, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37414252

RESUMO

PURPOSE: There is a significant need for a widely available, translatable, sensitive and non-invasive imaging biomarker for tumor hypoxia in radiation oncology. Treatment-induced changes in tumor tissue oxygenation can alter the sensitivity of cancer tissues to radiation, but the relative difficulty in monitoring the tumor microenvironment results in scarce clinical and research data. Oxygen-Enhanced MRI (OE-MRI) uses inhaled oxygen as a contrast agent to measure tissue oxygenation. Here we investigate the utility of dOE-MRI, a previously validated imaging approach employing a cycling gas challenge and independent component analysis (ICA), to detect VEGF-ablation treatment-induced changes in tumor oxygenation that result in radiosensitization. METHODS: Murine squamous cell carcinoma (SCCVII) tumor-bearing mice were treated with 5 mg/kg anti-VEGF murine antibody B20 (B20-4.1.1, Genentech) 2-7 days prior to radiation treatment, tissue collection or MR imaging using a 7 T scanner. dOE-MRI scans were acquired for a total of three repeated cycles of air (2 min) and 100% oxygen (2 min) with responding voxels indicating tissue oxygenation. DCE-MRI scans were acquired using a high molecular weight (MW) contrast agent (Gd-DOTA based hyperbranched polygylcerol; HPG-GdF, 500 kDa) to obtain fractional plasma volume (fPV) and apparent permeability-surface area product (aPS) parameters derived from the MR concentration-time curves. Changes to the tumor microenvironment were evaluated histologically, with cryosections stained and imaged for hypoxia, DNA damage, vasculature and perfusion. Radiosensitizing effects of B20-mediated increases in oxygenation were evaluated by clonogenic survival assays and by staining for DNA damage marker γH2AX. RESULTS: Tumors from mice treated with B20 exhibit changes to their vasculature that are consistent with a vascular normalization response, and result in a temporary period of reduced hypoxia. DCE-MRI using injectable contrast agent HPG-GDF measured decreased vessel permeability in treated tumors, while dOE-MRI using inhaled oxygen as a contrast agent showed greater tissue oxygenation. These treatment-induced changes to the tumor microenvironment result in significantly increased radiation sensitivity, illustrating the utility of dOE-MRI as a non-invasive biomarker of treatment response and tumor sensitivity during cancer interventions. CONCLUSIONS: VEGF-ablation therapy-mediated changes to tumor vascular function measurable using DCE-MRI techniques may be monitored using the less invasive approach of dOE-MRI, an effective biomarker of tissue oxygenation that can monitor treatment response and predict radiation sensitivity.


Assuntos
Neoplasias , Oxigênio , Camundongos , Animais , Oxigênio/metabolismo , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Hipóxia , Biomarcadores , Microambiente Tumoral
9.
Sci Rep ; 13(1): 12429, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528151

RESUMO

Type II topoisomerase (Top2) poisoning therapy is used to treat a broad range of cancers via induction of double strand breaks (DSBs) in cells undergoing replication and transcription. Preventing the repair of DSBs via inhibition of DNA-PK, an inhibitor of non-homologous end-joining (NHEJ), increases cell kill with Top2 poisons and has led to the initiation of several clinical trials. To elucidate the cellular mechanisms leading to synergistic activity of dual DNA-PK/Top2 inhibition we looked at their effects in cycling versus non-cycling cells, in 3D spheroids and in xenograft models. Combined DNA-PK/Top2 inhibition was found to not only increase the cell kill in proliferating cells, the cell population that is typically most vulnerable to Top2 poisoning, but also in non-proliferative but transcriptionally active cells. This effect was observed in both cancer and normal tissue models, killing more cells than high concentrations of etoposide alone. The combination treatment delayed tumor growth in mice compared to Top2 poisoning alone, but also led to increased toxicity. These findings demonstrate sensitization of Top2ß-expressing, non-cycling cells to Top2 poisoning by DNA-PK inhibition. Expansion of the target cell population of Top2 poison treatment to include non-proliferating cells via combination with DNA damage repair inhibitors has implications for efficacy and toxicity of these combinations, including for inhibitors of DNA-PK currently in clinical trial.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Humanos , Animais , Camundongos , Proteínas de Ligação a DNA/genética , DNA Topoisomerases Tipo II/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Etoposídeo/farmacologia , Isomerases/genética , Proteína Quinase Ativada por DNA/genética , Neoplasias/tratamento farmacológico , DNA , Inibidores da Topoisomerase II/farmacologia
10.
Cancer Immunol Immunother ; 61(5): 643-54, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22021068

RESUMO

As more groups investigate the role of myeloid-derived suppressor cells (MDSCs) in promoting the growth of primary tumors and distant tumor metastases, it is imperative to ensure the accurate detection and quantification of MDSC immunosuppression ex vivo. MDSCs are defined by their ability to suppress immune responses. Although different in vitro culture conditions have been used to study MDSCs, the effect of different culture conditions on MDSC immunosuppression is unknown. We therefore isolated MDSCs from the lungs and spleens of 4T1 murine mammary tumor-bearing mice and assayed MDSC-mediated suppression of T cell responses under different culture conditions. We found that 4T1-induced MDSCs effectively suppressed T cell proliferation under serum-free conditions, but not when fetal calf serum (FCS) was present. FCS neither altered the immunosuppressive activities of other myeloid cell types (i.e., peritoneal or tumor-associated macrophages) nor modified the susceptibility of T cells to myeloid cell-mediated suppression, but instead acted directly on 4T1-induced MDSCs to significantly reduce their immunosuppressive function. Importantly, we found that bovine serum albumin was a major contributor to the antagonistic effects of FCS on 4T1-induced MDSC immunosuppression by inhibiting reactive oxygen species production from MDSCs. This work reveals that in vitro culture conditions influence the immunosuppressive properties of MDSCs and highlights the importance of testing different culture conditions on MDSC phenotype to ensure that MDSC immunosuppression is not being masked. These data have important implications for the accurate detection and identification of MDSCs, as well as for determining the influence of MDSC-mediated immunosuppression on primary and metastatic tumor growth.


Assuntos
Neoplasias Mamárias Experimentais/sangue , Neoplasias Mamárias Experimentais/imunologia , Células Mieloides/imunologia , Animais , Bovinos , Técnicas de Cultura de Células , Processos de Crescimento Celular/imunologia , Feminino , Terapia de Imunossupressão , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina/imunologia , Soroalbumina Bovina/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
BMC Cancer ; 10: 4, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20051134

RESUMO

BACKGROUND: Evidence suggests that tumor cells exposed to some DNA damaging agents are more likely to die if they retain microscopically visible gammaH2AX foci that are known to mark sites of double-strand breaks. This appears to be true even after exposure to the alkylating agent MNNG that does not cause direct double-strand breaks but does produce gammaH2AX foci when damaged DNA undergoes replication. METHODS: To examine this predictive ability further, SiHa human cervical carcinoma cells were exposed to 8 DNA damaging drugs (camptothecin, cisplatin, doxorubicin, etoposide, hydrogen peroxide, MNNG, temozolomide, and tirapazamine) and the fraction of cells that retained gammaH2AX foci 24 hours after a 30 or 60 min treatment was compared with the fraction of cells that lost clonogenicity. To determine if cells with residual repair foci are the cells that die, SiHa cervical cancer cells were stably transfected with a RAD51-GFP construct and live cell analysis was used to follow the fate of irradiated cells with RAD51-GFP foci. RESULTS: For all drugs regardless of their mechanism of interaction with DNA, close to a 1:1 correlation was observed between clonogenic surviving fraction and the fraction of cells that retained gammaH2AX foci 24 hours after treatment. Initial studies established that the fraction of cells that retained RAD51 foci after irradiation was similar to the fraction of cells that retained gammaH2AX foci and subsequently lost clonogenicity. Tracking individual irradiated live cells confirmed that SiHa cells with RAD51-GFP foci 24 hours after irradiation were more likely to die. CONCLUSION: Retention of DNA damage-induced gammaH2AX foci appears to be indicative of lethal DNA damage so that it may be possible to predict tumor cell killing by a wide variety of DNA damaging agents simply by scoring the fraction of cells that retain gammaH2AX foci.


Assuntos
Histonas/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Ensaio Cometa , Cricetinae , Cricetulus , Dano ao DNA , Feminino , Citometria de Fluxo/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rad51 Recombinase/metabolismo , Fatores de Tempo , Neoplasias do Colo do Útero/genética
12.
Clin Cancer Res ; 15(10): 3344-53, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19401347

RESUMO

PURPOSE: Is retention of gammaH2AX foci useful as a biomarker for predicting the response of xenograft tumors to cisplatin with X-ray? Is a similar approach feasible using biopsies from patients with cervical cancer? EXPERIMENTAL DESIGN: Mice bearing SiHa, WiDr, or HCT116 xenograft tumors were exposed to cisplatin and/or three daily doses of 2 Gy. Tumors were excised 24 h after treatment and single cells were analyzed for clonogenic fraction and retention of gammaH2AX foci. Tumor biopsies were examined using 47 paraffin-embedded sections from untreated tumors and 24 sections from 8 patients undergoing radiochemotherapy for advanced cancer of the cervix. RESULTS: Residual gammaH2AX measured 24 h after cisplatin injection accurately predicted surviving fraction in SiHa and WiDr xenografts. When a clinically equivalent protocol using cisplatin and fractionated irradiation was employed, the fraction of xenograft cells lacking gammaH2AX ranked survival accurately but underestimated tumor cell kill. Residual gammaH2AX foci were detected in clinical samples; on average, only 25% of tumor nuclei exhibited one or more gammaH2AX foci before treatment and 74% after the start of treatment. CONCLUSION: gammaH2AX can provide useful information on the response of human tumors to the combination of cisplatin and radiation, but prediction becomes less accurate as more time elapses between treatment and tumor biopsy. Use of residual gammaH2AX as a biomarker for response is feasible when cell survival exceeds approximately 20%, but heterogeneity in endogenous and treatment-induced gammaH2AX must be considered.


Assuntos
Cisplatino/uso terapêutico , Fracionamento da Dose de Radiação , Histonas/biossíntese , Neoplasias Experimentais/terapia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cisplatino/administração & dosagem , Terapia Combinada , DNA de Neoplasias/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Células HCT116 , Humanos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Fluorescência , Neoplasia Residual/metabolismo , Neoplasia Residual/patologia , Neoplasia Residual/terapia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS Genet ; 3(8): e134, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17696614

RESUMO

Genome instability is a hallmark of cancer cells. One class of genome aberrations prevalent in tumor cells is termed gross chromosomal rearrangements (GCRs). GCRs comprise chromosome translocations, amplifications, inversions, deletion of whole chromosome arms, and interstitial deletions. Here, we report the results of a genome-wide screen in Saccharomyces cerevisiae aimed at identifying novel suppressors of GCR formation. The most potent novel GCR suppressor identified is BUD16, the gene coding for yeast pyridoxal kinase (Pdxk), a key enzyme in the metabolism of pyridoxal 5' phosphate (PLP), the biologically active form of vitamin B6. We show that Pdxk potently suppresses GCR events by curtailing the appearance of DNA lesions during the cell cycle. We also show that pharmacological inhibition of Pdxk in human cells leads to the production of DSBs and activation of the DNA damage checkpoint. Finally, our evidence suggests that PLP deficiency threatens genome integrity, most likely via its role in dTMP biosynthesis, as Pdxk-deficient cells accumulate uracil in their nuclear DNA and are sensitive to inhibition of ribonucleotide reductase. Since Pdxk links diet to genome stability, our work supports the hypothesis that dietary micronutrients reduce cancer risk by curtailing the accumulation of DNA damage and suggests that micronutrient depletion could be part of a defense mechanism against hyperproliferation.


Assuntos
Aberrações Cromossômicas , Cromossomos Fúngicos , Dano ao DNA , Genes Supressores , Fosfato de Piridoxal/fisiologia , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Genes Supressores/fisiologia , Genes cdc , Técnicas Genéticas , Genoma Fúngico , Instabilidade Genômica , Células HeLa , Humanos , Modelos Biológicos , Piridoxal Quinase/genética , Piridoxal Quinase/fisiologia , Fosfato de Piridoxal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Supressão Genética
14.
J Photochem Photobiol B ; 204: 111780, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31981988

RESUMO

Photothermal therapy (PTT) is recently clinically established cancer therapy that uses near-infrared light for thermal ablation of solid tumors. The biopolymer N-dihydrogalactochitosan (GC) was shown in multiple reports to act as a very effective adjunct to tumor PTT. In the present study, mouse tumor model SCCVII (squamous cell carcinoma) was used with two protocols, in situ tumor PTT and therapeutic PTT vaccine for tumors, for investigating the effects of GC. The results reveal that GC can potentiate tumoricidal action of PTT through both direct and indirect mechanisms. In addition to previously known capacity of GC for activating immune effector cells, the indirect means is shown to include reducing the populations of immunoregulatory T cells (Tregs) in PTT-treated tumors. Testing the effects of GC on PTT-treated SCCVII tumor cells in vitro uncovered the existence of a direct mechanism evident by reduced colony survival of these cells. Fluorescence microscopy demonstrated increased binding of fluorescein-labeled GC to PTT-treated compared to untreated SCCVII cells that can be blocked by pre-exposure to annexin V. The results of additional in vitro testing with specific inhibitors demonstrate that these direct mechanisms do not involve the engagement of death surface receptors that trigger extrinsic apoptosis pathway signaling but may be linked to pro-survival activity of caspase-1. Based on the latter, it can be suggested that GC-promoted killing of PTT-treated cells stems from interference of GC bound to damaged membrane components with the repair of these structures that consequently hinders cell survival.


Assuntos
Quitosana/química , Lasers Semicondutores , Fototerapia/métodos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Caspase 1/química , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quitosana/farmacologia , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Fluoresceína/química , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Receptor fas/metabolismo
15.
Int Immunopharmacol ; 75: 105764, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31352327

RESUMO

It is becoming apparent that to obtain robust and prolonged antitumor responses in cancer immunotherapy, appropriate adjunct agents promoting both tumor antigen delivery and immune rejection enhancement are critically required. The semisynthetic biopolymer N-dihydrogalactochitosan (GC) is emerging as a promising such candidate. In the present study, the effects of GC were investigated when combined with cancer vaccines generated by photodynamic therapy (PDT) using mouse tumor model SCCVII (squamous cell carcinoma). The adjunct GC treatment was found to enhance therapeutic benefit obtained with PDT vaccine, while reducing the numbers of myeloid-derived suppressor cells. Another important property of GC is promoting directly the death of SCCVII cells sustaining injury from PDT mediated by various photosensitizers. This effect is extended to cells treated by cryoablation therapy (CAT) performed by exposure to -80 °C. A capacity of GC for preferential binding to PDT treated cells was demonstrated using fluorescence microscopy. In vitro testing with specific caspase-1 inhibitor revealed a pro-survival role of this enzyme in membrane lipid repair mechanisms following combined PDT plus GC treatment. In conclusion, GC represents a uniquely promising adjunct for various PDT protocols, photothermal and similar rapid tumor-ablating therapies.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Quitosana/análogos & derivados , Quitosana/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Fotoquimioterapia , Animais , Criocirurgia , Imunoterapia , Camundongos Endogâmicos C3H , Fármacos Fotossensibilizantes/uso terapêutico , Células Tumorais Cultivadas
16.
Radiother Oncol ; 86(3): 336-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17904670

RESUMO

BACKGROUND AND PURPOSE: Retention of gammaH2AX foci in irradiated cells can signify a deficiency in DNA double-strand break repair that may be useful as an indicator of individual radiosensitivity. MATERIALS AND METHODS: To examine this possibility, the retention of gammaH2AX after irradiation was compared using white blood cells from 20 prostate brachytherapy patients who developed late normal tissue toxicity and 20 patients with minimal toxicity. Peripheral blood lymphocytes and monocytes were coded for analysis, exposed in vitro to 4 doses of 0.7 Gy X-rays at 3 hourly intervals, and retention of gammaH2AX was measured by flow cytometry 18 hours after the final irradiation. RESULTS: Excellent reproducibility in duplicate samples and a range in residual gammaH2AX from 7% above background to 244% above background were observed. Residual gammaH2AX in lymphocytes showed a positive correlation with patient age. However, no relation was observed between the level of residual gammaH2AX in peripheral blood mononuclear cells and late normal tissue damage. CONCLUSIONS: We conclude that the method of detection of residual gammaH2AX after in vitro irradiation of lymphocytes and monocytes was simple, reproducible, and sensitive. However, it failed to predict for late normal tissue toxicity after brachytherapy. Possible reasons are discussed.


Assuntos
Histonas/biossíntese , Linfócitos/metabolismo , Monócitos/metabolismo , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Raios X/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Braquiterapia , Quebras de DNA de Cadeia Dupla , Humanos , Técnicas In Vitro , Linfócitos/efeitos da radiação , Masculino , Monócitos/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
17.
Clin Cancer Res ; 13(22 Pt 1): 6816-26, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18006784

RESUMO

PURPOSE: PCI-24781 is a novel broad spectrum histone deacetylase inhibitor that is currently in phase I clinical trials. The ability of PCI-24781 to act as a radiation sensitizer and the mechanisms of radiosensitization were examined. EXPERIMENTAL DESIGN: Exponentially growing human SiHa cervical and WiDr colon carcinoma cells were exposed to 0.1 to 10 micromol/L PCI-24781 in vitro for 2 to 20 h before irradiation and 0 to 4 h after irradiation. Single cells and sorted populations were analyzed for histone acetylation, H2AX phosphorylation, cell cycle distribution, apoptotic fraction, and clonogenic survival. RESULTS: PCI-24781 treatment for 4 h increased histone H3 acetylation and produced a modest increase in gammaH2AX but negligible cell killing or radiosensitization. Treatment for 24 h resulted in up to 80% cell kill and depletion of cells in S phase. Toxicity reached maximum levels at a drug concentration of approximately 1 micromol/L, and cells in G(1) phase at the end of treatment were preferentially spared. A similar dose-modifying factor (DMF(0.1) = 1.5) was observed for SiHa cells exposed for 24 h at 0.1 to 3 micromol/L, and more radioresistant WiDr cells showed less sensitization (DMF(0.1) = 1.2). Limited radiosensitization and less killing were observed in noncycling human fibroblasts. Cell sorting experiments confirmed that depletion of S-phase cells was not a major mechanism of radiosensitization and that inner noncycling cells of SiHa spheroids could be sensitized by nontoxic doses. PCI-24781 pretreatment increased the fraction of cells with gammaH2AX foci 24 h after irradiation but did not affect the initial rate of loss of radiation-induced gammaH2AX or the rate of rejoining of DNA double-strand breaks. CONCLUSIONS: PCI-24781 shows promise as a radiosensitizing agent that may compromise the accuracy of repair of radiation damage.


Assuntos
Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Histonas/análise , Histonas/metabolismo , Humanos
18.
Nat Commun ; 8: 14432, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211448

RESUMO

G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Quadruplex G , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Sequência de Bases , Benzoxazinas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Ribossômico/genética , Feminino , Quadruplex G/efeitos dos fármacos , Genoma Humano , Genótipo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Quinolonas/farmacologia , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
DNA Repair (Amst) ; 4(10): 1172-81, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16046194

RESUMO

Exposure of cells to hypertonic medium after X-irradiation results in a 3-4-fold increase in the phosphorylation of histone H2AX (gammaH2AX) at sites of radiation-induced DNA double-strand breaks. This increase was previously associated with salt-induced radiosensitization and inhibition of repair of DNA double-strand breaks. To examine possible mechanisms for the increase in foci size, chemical inhibitors of kinase and phosphatase activity and cell lines deficient in ATM and DNA-PK, two kinases known to phosphorylate H2AX, were examined. H2AX kinase and phosphatase activity were maintained in the presence of high salt. ATM mutant HT144 melanoma cells showed the expected 3-4-fold increase in H2AX phosphorylation in the presence of 0.5M Na(+). However, DNA-PKcs deficient M059J cells failed to respond to hypertonic treatment and M059J Fus1 cells corrected for this deficiency showed the expected increase in foci size. Although the active phosphoform of ATM, phosphoserine-1981, increased after irradiation, the level was unaffected by the addition of 0.5M Na(+). Instead, 0.5M Na(+) caused a partial redistribution of serine-1981-ATM to perinuclear regions. Hypertonic medium added after irradiation was effective in inhibiting rejoining of the radiation-induced double-strand breaks even in DNA-PK deficient M059J cells. We suggest that hypertonic treatment following irradiation inhibits double-strand break rejoining that in turn maintains DNA-PK activity at the site of the break, enhancing the size of the gammaH2AX foci.


Assuntos
Dano ao DNA , Histonas/metabolismo , Núcleo Celular/química , Meios de Cultura/farmacologia , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Histonas/análise , Humanos , Fosforilação , Solução Salina Hipertônica , Cloreto de Sódio/farmacologia , Células Tumorais Cultivadas
20.
Radiother Oncol ; 80(2): 223-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16905207

RESUMO

BACKGROUND AND PURPOSE: Human tumor cell lines grown as monolayers or xenograft tumors were exposed to single or multiple fractions of X-rays and the ability to use residual gammaH2AX to identify radiosensitive cells was assessed. MATERIALS AND METHODS: Twenty-four hour after exposure to single or daily fractions of X-rays, human tumor cells from monolayers or xenografts were analyzed for clonogenic surviving fraction. Cells were also fixed and labeled with anti-gammaH2AX antibodies for analysis by flow and image cytometry. The relative amount of residual gammaH2AX and the percentage of cells with <3 foci were compared with the clonogenic surviving fraction measured for the same population. RESULTS: The fraction of gammaH2AX remaining 24h after X-irradiation relative to peak levels 1h after exposure was correlated with radiosensitivity (SF2) for 18 human tumor cell lines. The fraction of SiHa, C33A and WiDr cells with <3 gammaH2AX foci was predictive of clonogenic surviving fraction for both monolayer cells exposed to either single doses or up to 5 fractions. Similar results were obtained using cells from xenograft tumors of irradiated mice. CONCLUSION: The percentage of tumor cells that retain gammaH2AX foci 24h after single or fractionated doses appears to be a useful measure of cellular radiosensitivity that is potentially applicable in the clinic.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/radioterapia , Histonas/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/radioterapia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Neoplasias do Colo/patologia , Fracionamento da Dose de Radiação , Feminino , Histonas/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação/efeitos da radiação , Neoplasias do Colo do Útero/patologia , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA