Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36825777

RESUMO

This study evaluated productive and physiological responses in feedlot cattle receiving a finishing diet that included Ca salts of palm oil (CSPALM), or a blend of Ca salts of palm, cottonseed, and soybean oils (CSMIX). Ninety yearling steers were housed in 15 pens equipped with Calan-gate feeders (6 steers/pen). Steers within each pen were stratified by shrunk body weight (BW; 410 ±â€…3.3 kg across pens) on d 0 and assigned to receive a total-mixed ration (TMR) containing (dry matter basis) 2.2% of CSPALM (n = 30), 2.2% of CSMIX (n = 30), or no supplemental fat (CON; n = 30). Individual TMR intake was evaluated weekly. Blood samples were collected on d 0, 28, 56, 91, 119, and 147. Samples of the Longissimus muscle (LM) were collected on d 84 via biopsy. Upon slaughter on d 148, hot carcass weight (HCW) was recorded to estimate final BW (63% dressing), and one LM steak sample (2.54 cm thickness) was removed from the right side of each carcass. Steer ADG was greater (P = 0.02) for CSMIX compared with CSPALM and tended to be greater (P = 0.09) for CSMIX compared with CON. The gain:feed ratio was greater (P ≤ 0.05) for CSMIX compared with CSPALM and CON, and carcass LM area was less (P = 0.01) for CSPALM compared with CSMIX and CON. No treatment effects were detected (P ≥ 0.21) for TMR intake, final BW, and other carcass merit traits including marbling. Mean plasma cholesterol concentrations were greater (P < 0.01) in CSMIX and CSPALM compared with CON, and mRNA expression of adipocyte fatty acid binding protein in the LM on d 84 was greater (P ≤ 0.04) in CSPALM compared with CSMIX and CON. No treatment effects were detected (P ≥ 0.15) for plasma concentrations of glucose, insulin, insulin-like growth factor I, and leptin, nor for other LM genes associated with marbling and muscle growth. Concentrations of total fatty acids (FA) in plasma and LM steak samples were greater (P < 0.01) in CSMIX compared with CSPALM and CON, and greater (P < 0.01) in the LM samples of CSPALM compared with CON. Steers receiving CSMIX had greater (P < 0.01) concentrations of polyunsaturated and ω-6 FA in plasma and LM steak samples compared with CSPALM and CON. Supplementing CSMIX improved gain efficiency and FA profile in the LM of feedlot steers compared with the CON diet, but the same responses were not observed when CSPALM was offered. Perhaps the advantages from CSMIX supplementation resulted from increasing the supply of polyunsaturated and ω-6 FA to the finishing diet.


Supplemental fat has been provided to feedlot cattle to increase energy density of their diets, and may yield nutraceutical advantages if includes polyunsaturated fatty acids (FA). Alternatively, carcass quality can be improved when the fat supplement is based on saturated and monounsaturated FA. Hence, this experiment evaluated a blend of saturated, monounsaturated, and polyunsaturated FA to improve both performance and carcass merit in feedlot cattle. Steers received a finishing diet that included this blend (CSMIX), a source of saturated and monounsaturated FA (CSPALM), or no supplemental fat (CON). Growth rate and gain efficiency were improved in steers that received CSMIX compared with CSPALM and CON, and these traits did not differ between the latter treatments. Inclusion of CSMIX increased FA concentrations in the circulation of steers throughout the 147-day study and in Longissimus muscle (LM) samples collected after slaughter. This increase in FA concentrations was associated with greater accumulation of polyunsaturated and ω-6 FA, suggesting that CSMIX resulted in LM with FA profile deemed more beneficial for human consumption. Collectively, supplementing CSMIX to feedlot steers improved gain efficiency and FA composition in the LM, and these advantages may be associated with increased supply of polyunsaturated ω-6 FA to the finishing diet.


Assuntos
Suplementos Nutricionais , Sais , Bovinos , Animais , Ácidos Graxos , Ração Animal/análise , Dieta/veterinária , Composição Corporal
2.
Vet Clin North Am Food Anim Pract ; 38(3): 347-360, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36243457

RESUMO

Liver abscess has been identified in multiple classes of cattle, but cattle consuming higher energy diets may have greater prevalence of abscessation. The presence and severity of liver abscess has been associated with reduced dry matter intake, daily gain, and gain efficiency of individually fed animals, and as the prevalence of abscesses within pens of animals increases, growth performance worsens. Because of the importance of the liver to metabolism, damage due to abscess could negatively affect energy utilization. A preliminary analysis indicates severe liver abscess incidence increases the requirement of metabolizable energy for maintenance.


Assuntos
Doenças dos Bovinos , Abscesso Hepático , Ração Animal/análise , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Dieta/veterinária , Abscesso Hepático/epidemiologia , Abscesso Hepático/veterinária
3.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181501

RESUMO

The objective of this trial was to determine the influence of live yeast supplementation (LY), environmental condition (ENV), and their interaction (TRT) on energy partitioning, nitrogen metabolism, and ruminal fermentation dynamics of steers receiving a grower-type diet. The effects of LY and ENV were investigated using a 2 × 2 crossover design that spanned five periods. Eight Angus-crossbred steers were randomly split into pairs and housed in four outdoor pens outfitted with an individualized feeding system. Animals were limit-fed a grower diet (DIET) at 1.2% shrunk body weight (SBW) with no live yeast supplementation (NOY) or a grower diet top-dressed with 10 g LY/d for 14 d (1.2 × 1012 CFU/d). On days 13 and 14, animals were subjected to one of two ENV conditions, thermoneutral (TN; 18.4 ± 1.1 °C, 57.6 ± 2.8% relative humidity [RH]) or heat stress (HS; 33.8 ± 0.6 °C, 55.7 ± 2.7% RH), in two side-by-side, single-stall open-circuit, indirect respiration calorimetry chambers. Data were analyzed using a random coefficients model. Carryover effects were examined and removed from the model if not significant. Gross (GE), digestible, metabolizable, heat, and retained energies were not influenced by DIET, ENV, or TRT (P ≥ 0.202). Gaseous energy, as a percentage of GE, tended to increase during HS (P = 0.097). The only carryover effect in the study was for oxygen consumption (P = 0.031), which could be attributed to the tendency of NOY (P = 0.068) to have greater oxygen consumption. DIET, ENV, or TRT (P ≥ 0.154) had no effects on total animal methane or carbon dioxide emissions. Similarly, DIET, ENV, or TRT (P ≥ 0.157) did not affect ruminal pH, redox, protozoa enumeration, ruminal ammonia concentrations, and acetate-to-propionate ratio. Propionate concentrations were the greatest in animals in TN conditions receiving LY (P = 0.034) compared to the other TRT. This effect is mirrored by TN-LY tending to have greater acetate concentrations (P = 0.076) and total VFA concentrations (P = 0.065). Butyrate concentrations tended to be greater for animals fed LY (P = 0.09). There was a tendency for LY to have elevated numbers of Fusobacterium necrophorum (P = 0.053). Although this study lacked effects of LY on energy partitioning, nitrogen metabolism, and some ruminal parameters during HS, further research should be completed to understand if LY is a plausible mitigation technique to enhance beef animals' performance in tropical and sub-tropical regions of the world.


About 70% of global beef production is located in tropical and sub-tropical regions. With elevated temperatures and significant humidity, these regions impose heat stress on beef animals. Heat stress is the main antagonist to ruminant production as it decreases dry matter intake and digestion and increases energy expenditure due to the animal's need for thermoregulation. Supplementation of live yeast products has proven efficacious at improving ruminal fermentation dynamics. This study sets out to determine if live yeast supplementation to animals in heat stress conditions can positively affect energy partitioning, nitrogen metabolism, and ruminal parameters. Additionally, this study models the ruminal performance after exposure to heat stress or live yeast supplementation. This study identified several interesting in vitro dynamics of previously stressed- or supplemented rumen fluid. Although there were a lack of effects for live yeast supplementation on energy partitioning, nitrogen metabolism, and some ruminal parameters during heat stress, further research should be completed in order to understand if live yeast supplementation is a plausible mitigation technique to enhance the performance of beef animals reared in tropical and sub-tropical regions of the world.


Assuntos
Rúmen , Fermento Seco , Bovinos , Animais , Fermentação , Rúmen/metabolismo , Saccharomyces cerevisiae/metabolismo , Ração Animal/análise , Digestão , Propionatos/farmacologia , Fermento Seco/farmacologia , Dieta/veterinária , Nitrogênio/metabolismo , Suplementos Nutricionais
4.
J Anim Sci ; 99(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33751054

RESUMO

The addition of natural plant secondary compounds to ruminant feed has been extensively studied because of their ability to modify digestive and metabolic functions, resulting in a potential reduction in greenhouse gas emissions, among other benefits. Condensed tannin (CT) supplementation may alter ruminal fermentation and mitigate methane (CH4) emissions. This study's objective was to determine the effect of quebracho CT extract [QT; Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley & T. Meyer] within a roughage-based diet on ruminal digestibility and kinetic parameters by using the in situ and in vitro gas production techniques, in addition to blood urea nitrogen (BUN) and ruminal (volatile fatty acid [VFA], NH3-N, and protozoa count) parameters. Twenty rumen-cannulated steers were randomly assigned to four dietary treatments: QT at 0%, 1%, 2%, and 3% of dry matter (DM; QT0: 0% CT, QT1: 0.70% CT, QT2: 1.41% CT, and QT3: 2.13% CT). The in situ DM digestibility increased linearly (P = 0.048) as QT inclusion increased, whereas in situ neutral detergent fiber digestibility (NDFD) was not altered among treatments (P = 0.980). Neither total VFA concentration nor acetate-to-propionate ratio differed among dietary treatments (P = 0.470 and P = 0.873, respectively). However, QT3 had lower isovalerate and isobutyrate concentrations compared with QT0 (P ≤ 0.025). Ruminal NH3 and BUN tended to decline (P ≤ 0.075) in a linear fashion as QT inclusion increased, suggesting decreased deamination of feed protein. Ruminal protozoa count was reduced in quadratic fashion (P = 0.005) as QT inclusion increased, where QT1 and QT2 were lower compared with QT0 and QT3. Urinary N excretion tended to reduce in a linear fashion (P = 0.080) as QT increased. There was a treatment (TRT) × Day interaction for in vitro total gas production and fractional rate of gas production (P = 0.013 and P = 0.007, respectively), and in vitro NDFD tended to be greater for QT treatments compared with no QT inclusion (P = 0.077). There was a TRT × Day interaction (P = 0.001) on CH4 production, with QT3 having less CH4 production relative to QT0 on day 0 and QT2 on days 7 and 28. Feeding QT up to 3% of the dietary DM in a roughage-based diet did not sacrifice the overall DM digestibility and ruminal parameters over time. Still, it is unclear why QT2 did not follow the same pattern as in vitro gas parameters. Detailed evaluations of amino acid degradation might be required to fully define CT influences on ruminal fermentation parameters and CH4 production.


Assuntos
Digestão , Rúmen , Ração Animal/análise , Animais , Bovinos , Colorado , Dieta/veterinária , Suplementos Nutricionais , Fermentação , Extratos Vegetais/metabolismo , Rúmen/metabolismo
5.
J Anim Sci ; 97(12): 4987-4998, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31679025

RESUMO

This study evaluated the effects of supplementing dry live yeast (LY; Saccharomyces cerevisiae) on in vitro gas production (IVGP) fermentation dynamics, pH, and CH4 concentration at 48 h, and in situ rumen parameters and digestibility of DM (DMD) and NDF (NDFD) of growing cattle during 3 feeding phases: grower (GRW) for 17 d (38% steamed-flaked corn; SFC), transition (TRANS) for 15 d (55.5% SFC: 1.2 Mcal/kg NEg), and finisher (FIN) for 13 d (73% SFC: 1.23 Mcal/kg NEg). Twenty British-crossbred, ruminally cannulated steers (183 kg ± 44 kg) 6 mo of age were blocked by weight into 5 pens containing Calan gate feeders and received a control (CON) diet (17.2% CP, 35.8% NDF, 86.7% DM) without LY on days -12 to 0. After that, animals were randomly assigned to treatments (TRT), 5 animals per TRT: CON or LY at inclusion rates of 5 g/d (LY1), 10 g/d (LY2), or 15 g/d (LY3) top dressed every morning at 0800 for 45 d. The DMD and NDFD were assessed during 7 separate collection days using in situ nylon bags containing 5 g of GRW, TRANS, or FIN diets, incubated at 1200 for 48 h. Protozoa counts (PC) were determined during 5 collection periods. Data were analyzed as a repeated measure within a randomized complete block design, assuming a random effect of the pen. For GRW, TRT altered the total gas production of the nonfiber carbohydrate (NFC; P = 0.045) and the fractional rate of degradation (kd) of the fiber carbohydrate (FC) pool (P = 0.001) in a cubic pattern (P ≤ 0.05): LY2 had the most gas production and fastest kd. TRT also influenced DMD (P = 0.035) and NDFD (P = 0.012) with LY2 providing the greatest digestibility. For TRANS, TRT tended to affect the NFC kd (P = 0.078) and influenced pH (P = 0.04) and DMD (P < 0.001) in which LY2 yielded the fastest kd, highest pH, and greatest DMD. For FIN, there was an effect of TRT on total gas production (P < 0.001) and kd (P = 0.004) of the NFC pool, FC kd (P = 0.012), in vitro CH4 concentration (P < 0.001), PC (P < 0.001), DMD (P = 0.039), and NDFD (P = 0.008). LY1 had the highest PC and provided the greatest DMD and NDFD. LY2 had the fastest kd of both the NFC and FC pools and had the least CH4 concentration. LY3 had the greatest NFC gas production. No specific dose-response pattern was observed, but 10 g/d provided the most beneficial result for all diets. We concluded that supplementation with LY affected IVGP as well as ruminal parameters and digestibilities.


Assuntos
Ração Animal/análise , Digestão/fisiologia , Rúmen/metabolismo , Fermento Seco/farmacologia , Animais , Bovinos , Detergentes , Dieta/veterinária , Fibras na Dieta/metabolismo , Fermentação , Masculino , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA