Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(9): e1010419, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36137093

RESUMO

Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibiting the DNA damage response. In Saccharomyces cerevisiae, silent information regulator (Sir) proteins bind to terminal repeats and to subtelomeric X-elements, resulting in transcriptional silencing. Herein, we show that sir2 mutant strains display a specific loss of a nucleosome residing in the X-elements and that this deficiency is remarkably consistent between different telomeres. The X-elements contain several binding sites for the transcription factor Reb1 and we found that Sir2 and Reb1 compete for stabilizing/destabilizing this nucleosome, i.e. inactivation of Reb1 in a sir2 background reinstated the lost nucleosome. The telomeric-repeat-containing RNAs (TERRAs) originate from subtelomeric regions and extend into the terminal repeats. Both Sir2 and Reb1 repress TERRAs and in a sir2 reb1 double mutant, TERRA levels increased synergistically, showing that Sir2 and Reb1 act in different pathways for repressing TERRAs. We present evidence that Reb1 restricts TERRAs by terminating transcription. Mapping the 5'-ends of TERRAs from several telomeres revealed that the Sir2-stabilized nucleosome is the first nucleosome downstream from the transcriptional start site for TERRAs. Finally, moving an X-element to a euchromatic locus changed nucleosome occupancy and positioning, demonstrating that X-element nucleosome structure is dependent on the local telomere environment.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Telômero/genética , Telômero/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Appl Toxicol ; 43(8): 1225-1241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36869434

RESUMO

The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.


Assuntos
Poluentes Atmosféricos , Hipersensibilidade , Humanos , Material Particulado/análise , Poluentes Atmosféricos/química , Alérgenos/toxicidade , Xenobióticos , Células Epiteliais/metabolismo , Aerossóis/toxicidade , Tamanho da Partícula
3.
Anal Biochem ; 618: 114127, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571488

RESUMO

The aim of this study was to explore the impact of three different standard reference particulate matter (ERM-CZ100, SRM-1649, and SRM-2975) on epigenetic DNA modifications including cytosine methylation, cytosine hydroxymethylation, and adenine methylation. For the determination of low levels of adenine methylation, we developed and applied a novel DNA nucleobase chemical derivatization and combined it with liquid chromatography tandem mass spectrometry. The developed method was applied for the analysis of epigenetic modifications in monocytic THP-1 cells exposed to the three different reference particulate matter for 24 h and 48 h. The mass fraction of epigenetic active elements As, Cd, and Cr was analyzed by inductively coupled plasma mass spectrometry. The exposure to fine dust ERM-CZ100 and urban dust SRM-1649 decreased cytosine methylation after 24 h exposure, whereas all 3 p.m. increased cytosine hydoxymethylation following 24 h exposure, and the epigenetic effects induced by SRM-1649 and diesel SRM-2975 were persistent up to 48 h exposure. The road tunnel dust ERM-CZ100 significantly increased adenine methylation following the shorter exposure time. Two-dimensional scatters analysis between different epigenetic DNA modifications were used to depict a significantly negative correlation between cytosine methylation and cytosine hydroxymethylation supporting their possible functional relationship. Metals and polycyclic aromatic hydrocarbons differently shapes epigenetic DNA modifications.


Assuntos
Adenina , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espectrometria de Massas em Tandem , Adenina/análogos & derivados , Adenina/metabolismo , Cromatografia Líquida , Epigenômica , Humanos , Células THP-1
4.
Environ Res ; 185: 109360, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222629

RESUMO

Ambient particulate matter (PM) is a leading global environmental health risk. Current air quality regulations are based on airborne mass concentration. However, PM from different sources have distinct chemical compositions and varied toxicity. Connections between emission control measures, air quality, PM composition, and toxicity remain insufficiently elucidated. The current study assessed the composition and toxicity of PM collected in Nanjing, China before, during, and after an air quality intervention for the 2014 Youth Olympic Games. A co-culture model that mimics the alveolar epithelium with the associated macrophages was created using A549 and THP-1 cells. These cells were exposed to size-segregated inhalable PM samples. The composition and toxicity of the PM samples were influenced by several factors including seasonal variation, emission sources, and the air quality intervention. For example, we observed a size-dependent shift in particle mass concentrations during the air quality intervention with an emphasized proportion of smaller particles (PM2.5) present in the air. The roles of industrial and fuel combustion and traffic emissions were magnified during the emission control period. Our analyses revealed that the PM samples demonstrated differential cytotoxic potencies at equal mass concentrations between sampling periods, locations, and time of day, influenced by variations in the predominant emission sources. Coal combustion and industrial emissions were the most important sources affecting the toxicological responses and displayed the least variation in emission contributions between the sampling periods. In conclusion, emission control mitigated cytotoxicity and oxidative stress for particles larger than 0.2 µm, but there was inadequate evidence to determine if it was the key factor reducing the harmful effects of PM0.2.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adolescente , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
5.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539833

RESUMO

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Exposição por Inalação/efeitos adversos , Picea/química , Pinus/química , Fumaça/efeitos adversos , Madeira , Células A549 , Aerossóis , Poluentes Atmosféricos/análise , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Calefação , Humanos , Exposição por Inalação/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Células RAW 264.7 , Fumaça/análise , Especificidade da Espécie , Transcriptoma/efeitos dos fármacos
6.
J Virol ; 89(22): 11654-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355094

RESUMO

UNLABELLED: In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR(-/-))-CD46Ge mice with 2 × 10(5) 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE: Although MERS-CoV has not yet acquired extensive distribution, being mainly confined to the Arabic and Korean peninsulas, it could adapt to spread more readily among humans and thereby become pandemic. Therefore, the development of a vaccine is mandatory. The integration of antigen-coding genes into recombinant MV resulting in coexpression of MV and foreign antigens can efficiently be achieved. Thus, in combination with the excellent safety profile of the MV vaccine, recombinant MV seems to constitute an ideal vaccine platform. The present study shows that a recombinant MV expressing MERS-S is genetically stable and induces strong humoral and cellular immunity against MERS-CoV in vaccinated mice. Subsequent challenge experiments indicated protection of vaccinated animals, illustrating the potential of MV as a vaccine platform with the potential to target emerging infections, such as MERS-CoV.


Assuntos
Infecções por Coronavirus/prevenção & controle , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Clonagem Molecular/métodos , Infecções por Coronavirus/imunologia , Células Dendríticas/imunologia , Células HEK293 , Humanos , Imunidade Celular/imunologia , Interferon gama/metabolismo , Vírus do Sarampo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Vacinação , Células Vero
7.
Front Oncol ; 14: 1361022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741783

RESUMO

Purpose: Glioblastoma is the most common type of primary brain malignancy and has a poor prognosis. The standard treatment strategy is based on maximal safe surgical resection followed by radiotherapy and chemotherapy. Surgical resection can be optimized by using 5-delta-aminolevulinic acid (5-ALA)-induced fluorescence, which is the current mainstay. Although 5-ALA-induced fluorescence has gained general acceptance, it is also limited by inter-observer variability and non-standardized fluorescence parameters. We present a new software for processing images analysis to better recognize the tumor infiltration margins using an intraoperative immediate safety map of 5-ALA-induced fluorescence. We tested this in a brain model using a commercial surgical exoscope. Methods: A dedicated software GLIOVIS (ACQuF-II, Advanced Colorimetry-based Quantification of Fluorescence) was designed for processing analysis of images taken on the Intraoperative Orbital Camera Olympus Orbeye (IOC) to determine the relative quantification of Protoporphyrin IX (5-ALA metabolite) fluorescence. The software allows to superpose the new fluorescence intensity map and the safety margins over the original images. The software was tested on gel-based brain models. Results: Two surrogate models were developed: PpIX agarose gel-integrated in gelatin-based brain model at different scales (1:25 and 1:1). The images taken with the IOC were then processed using GLIOVIS. The intensity map and safety margins could be obtained for all available models. Conclusions: GLIOVIS for 5-ALA-guided surgery image processing was validated on various gelatin-based brain models. Different levels of fluorescence could be qualitatively digitalized using this technique. These results need to be further confirmed and corroborated in vivo and validated clinically in order to define a new standard of care for glioblastoma resection.

8.
Environ Toxicol Pharmacol ; 98: 104079, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796551

RESUMO

Building demolition following domestic fires or abrasive processing after thermal recycling can release particles harmful for the environment and human health. To mimic such situations, particles release during dry-cutting of construction materials was investigated. A reinforcement material consisting of carbon rods (CR), carbon concrete composite (C³) and thermally treated C³ (ttC³) were physicochemically and toxicologically analyzed in monocultured lung epithelial cells, and co-cultured lung epithelial cells and fibroblasts at the air-liquid interface. C³ particles reduced their diameter to WHO fibre dimensions during thermal treatment. Caused by physical properties or by polycyclic aromatic hydrocarbons and bisphenol A found in the materials, especially the released particles of CR and ttC³ induced an acute inflammatory response and (secondary) DNA damage. Transcriptome analysis indicated that CR and ttC³ particles carried out their toxicity via different mechanisms. While ttC³ affected pro-fibrotic pathways, CR was mostly involved in DNA damage response and in pro-oncogenic signaling.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Tamanho da Partícula , Pulmão , Células Epiteliais , Hidrocarbonetos Policíclicos Aromáticos/análise , Inflamação/metabolismo , Dano ao DNA , Materiais de Construção , Fibroblastos
9.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880831

RESUMO

X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.


Assuntos
COVID-19 , Fator 88 de Diferenciação Mieloide , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal , COVID-19/complicações , Fator 88 de Diferenciação Mieloide/genética , SARS-CoV-2 , Receptor 7 Toll-Like
10.
J Biol Chem ; 286(40): 35051-60, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21841195

RESUMO

The cold-sensitive single-residue mutation of glycine 680 in the reactive thiol region of Dictyostelium discoideum myosin-2 or the corresponding conserved glycine in other myosin isoforms has been reported to interfere with motor function. Here we present the x-ray structures of myosin motor domain mutants G680A in the absence and presence of nucleotide as well as the apo structure of mutant G680V. Our results show that the Gly-680 mutations lead to uncoupling of the reactive thiol region from the surrounding structural elements. Structural and functional data indicate that the mutations induce the preferential population of a state that resembles the ADP-bound state. Moreover, the Gly-680 mutants display greatly reduced dynamic properties, which appear to be related to the recovery of myosin motor function at elevated temperatures.


Assuntos
Dictyostelium/metabolismo , Mutação , Miosinas/química , Compostos de Sulfidrila/química , Difosfato de Adenosina/química , Sítio Alostérico , Sítios de Ligação , Temperatura Baixa , Cristalografia por Raios X/métodos , Cinética , Modelos Moleculares , Mutagênese , Análise de Componente Principal , Temperatura , Termodinâmica
11.
Artigo em Inglês | MEDLINE | ID: mdl-35151426

RESUMO

Adverse health effects driven by airborne particulate matter (PM) are mainly associated with reactive oxygen species formation, pro-inflammatory effects, and genome instability. Therefore, a better understanding of the underlying mechanisms is needed to evaluate health risks caused by exposure to PM. The aim of this study was to compare the genotoxic effects of two oxidizing agents (menadione and 3-chloro-1,2-propanediol) with three different reference PM (fine dust ERM-CZ100, urban dust SRM1649, and diesel PM SRM2975) on monocytic THP-1 and alveolar epithelial A549 cells. We assessed DNA oxidation by measuring the oxidized derivative 8-hydroxy-2'-deoxyguanosine (8-OHdG) following short and long exposure times to evaluate the persistency of oxidative DNA damage. Cytokinesis-block micronucleus cytome assay was performed to assess chromosomal instability, cytostasis, and cytotoxicity. Particles were characterized by inductively coupled plasma mass spectrometry in terms of selected elemental content, the release of ions in cell medium and the cellular uptake of metals. PM deposition and cellular dose were investigated by a spectrophotometric method on adherent A549 cells. The level of lipid peroxidation was evaluated via malondialdehyde concentration measurement. Despite differences in the tested concentrations, deposition efficiency, and lipid peroxidation levels, all reference PM samples caused oxidative DNA damage to a similar extent as the two oxidizers in terms of magnitude but with different oxidative DNA damage persistence. Diesel SRM2975 were more effective in inducing chromosomal instability with respect to fine and urban dust highlighting the role of polycyclic aromatic hydrocarbons derivatives on chromosomal instability. The persistence of 8-OHdG lesions strongly correlated with different types of chromosomal damage and revealed distinguishing sensitivity of cell types as well as specific features of particles versus oxidizing agent effects. In conclusion, this study revealed that an interplay between DNA oxidation persistence and chromosomal damage is driving particulate matter-induced genome instability.


Assuntos
Poluentes Atmosféricos , Instabilidade Cromossômica , Dano ao DNA , Material Particulado , 8-Hidroxi-2'-Desoxiguanosina/análise , Células A549 , Poluentes Atmosféricos/toxicidade , Poeira , Humanos , Material Particulado/toxicidade
12.
Sci Total Environ ; 806(Pt 1): 150489, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844316

RESUMO

Solid fuel usage in residential heating and cooking is one of the largest sources of ambient and indoor air particulate matter, which causes adverse effects on the health of millions of peoples worldwide. Emissions from solid fuel combustion, such as biomass or coal, are detrimental to health, but toxicological responses are largely unknown. In the present study, we compared the toxicological responses regarding cytotoxicity, inflammation and genotoxicity of spruce (SPR) and brown coal briquette (BCB) combustion aerosols on human alveolar epithelial cells (A549) as well as a coculture of A549 and differentiated human monocytic cells (THP-1) into macrophages exposed at the air-liquid interface (ALI). We included both the high emissions from the first hour and moderate emissions from the third hour of the batch combustion experiment in one ALI system, whereas, in the second ALI system, we exposed the cells during the whole 4-hour combustion experiment, including all combustion phases. Physico-chemical properties of the combustion aerosol were analysed both online and offline. Both SPR and BCB combustion aerosols caused mild cytotoxic but notable genotoxic effects in co-cultured A549 cells after one-hour exposure. Inflammatory response analysis revealed BCB combustion aerosols to cause a mild increase in CXCL1 and CXCL8 levels, but in the case of SPR combustion aerosol, a decrease compared to control was observed.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Aerossóis/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Dano ao DNA , Humanos , Pulmão , Material Particulado/análise , Material Particulado/toxicidade
13.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112925

RESUMO

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Idoso , Envelhecimento , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Células Endoteliais/química , Células Endoteliais/metabolismo , Humanos , Pulmão/metabolismo , Material Particulado/análise
14.
Environ Int ; 166: 107366, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763991

RESUMO

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.

15.
J Virol ; 84(23): 12344-50, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861272

RESUMO

Type I interferon (IFN-α/ß) induction upon viral infection contributes to the early antiviral host defense and ensures survival until the onset of adaptive immunity. Many viral infections lead to an acute, transient IFN expression which peaks a few hours after infection and reverts to initial levels after 24 to 36 h. Robust IFN expression often is conferred by specialized plasmacytoid dendritic cells (pDC) and may depend on positive-feedback amplification via the type I IFN receptor (IFNAR). Here, we show that mice infected with Thogoto virus (THOV), which is an influenza virus-like orthomyxovirus transmitted by ticks, mounted sustained IFN responses that persisted up to 72 h after infection. For this purpose, we used a variant of THOV lacking its IFN-antagonistic protein ML, an elongated version of the matrix (M) protein [THOV(ΔML)]. Of note, large amounts of type I IFN were also found in the serum of mice lacking the IFNAR. Early IFN-α expression seemed to depend on Toll-like receptor (TLR) signaling, whereas prolonged IFN-α responses strictly depended on RIG-I-like helicase (RLH) signaling. Unexpectedly, THOV(ΔML)-infected bone marrow-derived pDC (BM-pDC) produced only moderate IFN levels, whereas myeloid DC (BM-mDC) showed massive IFN induction that was IPS-1-dependent, suggesting that BM-mDC are involved in the massive, sustained IFN production in THOV(ΔML)-infected animals. Thus, our data are compatible with the model that THOV(ΔML) infection is sensed in the acute phase via TLR and RLH systems, whereas at later time points only RLH signaling is responsible for the induction of sustained IFN responses.


Assuntos
RNA Helicases DEAD-box/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Infecções por Orthomyxoviridae/imunologia , Transdução de Sinais/imunologia , Thogotovirus/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteína DEAD-box 58 , Interferon Tipo I/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Fator 88 de Diferenciação Mieloide/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Bioorg Med Chem Lett ; 21(12): 3654-7, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21570282

RESUMO

Aiming at structural optimization of potent and selective ABCG2 inhibitors, such as UR-ME22-1, from our laboratory, an efficient solid phase synthesis was developed to get convenient access to this class of compounds. 7-Carboxyisatoic anhydride was attached to Wang resin to give resin bound 2-aminoterephthalic acid. Acylation with quinoline-2- or -6-carbonyl chlorides, coupling with tetrahydroisoquinolinylethylphenylamine derivatives, cleavage of the carboxylic acids from solid support and treatment with trimethylsilydiazomethane gave the corresponding methyl esters. Among these esters highly potent and selective ABCG2 modulators were identified (inhibition of ABCB1 and ABCG2 determined in the calcein-AM and the Hoechst 33342 microplate assay, respectively). Interestingly, compounds bearing triethyleneglycol ether groups at the tetrahydroisoquinoline moiety (UR-COP77, UR-COP78) were comparable to UR-ME22-1 in potency but considerably more efficient (max inhibition 83% and 88% vs 60%, rel. to fumitremorgin c, 100%) These results support the hypothesis that solubility of the new ABCG2 modulators and of the reference compounds tariquidar and elacridar in aqueous media is the efficacy-limiting factor.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Quinolinas/síntese química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Técnicas de Química Combinatória , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Transporte Proteico/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia
17.
Environ Mol Mutagen ; 62(9): 490-501, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636079

RESUMO

The ubiquitous use of phthalates in various materials and the knowledge about their potential adverse effects is of great concern for human health. Several studies have uncovered their role in carcinogenic events and suggest various phthalate-associated adverse health effects that include pulmonary diseases. However, only limited information on pulmonary toxicity is available considering inhalation of phthalates as the route of exposure. While in vitro studies are often based on submerged exposures, this study aimed to expose A549 alveolar epithelial cells at the air-liquid interface (ALI) to unravel the genotoxic and oxidative stress-inducing potential of dibutyl phthalate (DBP) with concentrations relevant at occupational settings. Within this scope, a computer modeling approach calculating alveolar deposition of DBP particles in the human lung was used to define in vitro ALI exposure conditions comparable to potential occupational DBP exposures. The deposited mass of DBP ranged from 0.03 to 20 ng/cm2 , which was comparable to results of a human lung particle deposition model using an 8 h workplace threshold limit value of 580 µg/m3 proposed by the Scientific Committee on Occupational Exposure Limits for the European Union. Comet and Micronucleus assay revealed that DBP induced genotoxicity at DNA and chromosome level in sub-cytotoxic conditions. Since genomic instability was accompanied by increased generation of the lipid peroxidation marker malondialdehyde, oxidative stress might play an important role in phthalate-induced genotoxicity. The results highlight the importance of adapting in vitro studies to exposure scenarios relevant at occupational settings and reconsidering occupational exposure limits for DBP.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Dibutilftalato/toxicidade , Mutagênicos/toxicidade , Plastificantes/toxicidade , Células A549 , Adulto , Ar , Sobrevivência Celular/efeitos dos fármacos , Instabilidade Cromossômica/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Humanos , Exposição por Inalação , Masculino , Malondialdeído/metabolismo , Testes para Micronúcleos , Modelos Biológicos , Exposição Ocupacional , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Local de Trabalho
18.
Eur J Med Chem ; 191: 112133, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105979

RESUMO

Tariquidar derivatives have been described as potent and selective ABCG2 inhibitors. However, their susceptibility to hydrolysis limits their applicability. The current study comprises the synthesis and characterization of novel tariquidar-related inhibitors, obtained by bioisosteric replacement of the labile moieties in our previous tariquidar analog UR-ME22-1 (9). CuAAC ("click" reaction) gave convenient access to a triazole core as a substitute for the labile amide group and the labile ester moiety was replaced by different acyl groups in a Sugasawa reaction. A stability assay proved the enhancement of the stability in blood plasma. Compounds UR-MB108 (57) and UR-MB136 (59) inhibited ABCG2 in a Hoechst 33342 transport assay with an IC50 value of about 80 nM and belong to the most potent ABCG2 inhibitors described so far. Compound 57 was highly selective, whereas its PEGylated analog 59 showed some potency at ABCB1. Both 57 and 59 produced an ABCG2 ATPase-depressing effect which is in agreement with our precedent cryo-EM study identifying 59 as an ATPase inhibitor that exerts its effect via locking the inward-facing conformation. Thermostabilization of ABCG2 by 57 and 59 can be taken as a hint to comparable binding to ABCG2. As reference substances, compounds 57 and 59 allow additional mechanistic studies on ABCG2 inhibition. Due to their stability in blood plasma, they are also applicable in vivo. The highly specific inhibitor 57 is suited for PET labeling, helping to further elucidate the (patho)physiological role of ABCG2, e.g. at the BBB.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Quinolinas/farmacologia , Triazóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Relação Dose-Resposta a Droga , Humanos , Células KB , Células MCF-7 , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Células Tumorais Cultivadas
19.
PLoS One ; 14(3): e0214102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897139

RESUMO

Resolution of branched DNA structures is pivotal for repair of stalled replication forks and meiotic recombination intermediates. The Yen1 nuclease cleaves both Holliday junctions and replication forks. We show that Yen1 interacts physically with Uls1, a suggested SUMO-targeted ubiquitin ligase that also contains a SWI/SNF-family ATPase-domain. Yen1 is SUMO-modified in its noncatalytic carboxyl terminus and DNA damage induces SUMOylation. SUMO-modification of Yen1 strengthens the interaction to Uls1, and mutations in SUMO interaction motifs in Uls1 weakens the interaction. However, Uls1 does not regulate the steady-state level of SUMO-modified Yen1 or chromatin-associated Yen1. In addition, SUMO-modification of Yen1 does not affect the catalytic activity in vitro. Consistent with a shared function for Uls1 and Yen1, mutations in both genes display similar phenotypes. Both uls1 and yen1 display negative genetic interactions with the alternative HJ-cleaving nuclease Mus81, manifested both in hypersensitivity to DNA damaging agents and in meiotic defects. Point mutations in ULS1 (uls1K975R and uls1C1330S, C1333S) predicted to inactivate the ATPase and ubiquitin ligase activities, respectively, are as defective as the null allele, indicating that both functions of Uls1 are essential. A micrococcal nuclease sequencing experiment showed that Uls1 had minimal effects on global nucleosome positioning/occupancy. Moreover, increased gene dosage of YEN1 partially alleviates the mus81 uls1 sensitivity to DNA damage. We suggest a preliminary model in which Uls1 acts in the same pathway as Yen1 to resolve branched DNA structures.


Assuntos
DNA Helicases/metabolismo , Resolvases de Junção Holliday/metabolismo , Mapas de Interação de Proteínas , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Saccharomyces cerevisiae/genética , Sumoilação , Complexos Ubiquitina-Proteína Ligase/metabolismo
20.
Nat Struct Mol Biol ; 25(4): 333-340, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29610494

RESUMO

ABCG2 is an ATP-binding cassette (ABC) transporter that protects tissues against xenobiotics, affects the pharmacokinetics of drugs and contributes to multidrug resistance. Although many inhibitors and modulators of ABCG2 have been developed, understanding their structure-activity relationship requires high-resolution structural insight. Here, we present cryo-EM structures of human ABCG2 bound to synthetic derivatives of the fumitremorgin C-related inhibitor Ko143 or the multidrug resistance modulator tariquidar. Both compounds are bound to the central, inward-facing cavity of ABCG2, blocking access for substrates and preventing conformational changes required for ATP hydrolysis. The high resolutions allowed for de novo building of the entire transporter and also revealed tightly bound phospholipids and cholesterol interacting with the lipid-exposed surface of the transmembrane domains (TMDs). Extensive chemical modifications of the Ko143 scaffold combined with in vitro functional analyses revealed the details of ABCG2 interactions with this compound family and provide a basis for the design of novel inhibitors and modulators.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Indóis/química , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Quinolinas/química , Trifosfato de Adenosina/química , Sítios de Ligação , Colesterol/química , Microscopia Crioeletrônica , Dicetopiperazinas/química , Desenho de Fármacos , Resistência a Múltiplos Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Hidrólise , Cinética , Lipídeos/química , Estrutura Molecular , Fosfolipídeos/química , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA