Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 133(2): 235-49, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423196

RESUMO

Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.


Assuntos
Estresse Oxidativo , Síndrome do Desconforto Respiratório/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Humanos , Influenza Humana/metabolismo , Interleucina-6/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Fosfolipídeos/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Transdução de Sinais
2.
J Infect Dis ; 224(4): 632-642, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33367826

RESUMO

BACKGROUND: Ebola virus disease (EVD) supportive care strategies are largely guided by retrospective observational research. This study investigated the effect of EVD supportive care algorithms on duration of survival in a controlled nonhuman primate (NHP) model. METHODS: Fourteen rhesus macaques were challenged intramuscularly with a target dose of Ebola virus (1000 plaque-forming units; Kikwit). NHPs were allocated to intensive care unit (ICU)-like algorithms (n = 7), intravenous fluids plus levofloxacin (n = 2), or a control group (n = 5). The primary outcome measure was duration of survival, and secondary outcomes included changes in clinical laboratory values. RESULTS: Duration of survival was not significantly different between the pooled ICU-like algorithm and control groups (8.2 vs 6.9 days of survival; hazard ratio; 0.50; P = .25). Norepinephrine was effective in transiently maintaining baseline blood pressure. NHPs treated with ICU-like algorithms had delayed onset of liver and kidney injury. CONCLUSIONS: While an obvious survival difference was not observed with ICU-like care, clinical observations from this model may aid in EVD supportive care NHP model refinement.


Assuntos
Cuidados Críticos , Doença pelo Vírus Ebola , Unidades de Terapia Intensiva , Animais , Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola/terapia , Macaca mulatta , Primatas , Estudos Retrospectivos
3.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463877

RESUMO

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos
4.
J Infect Dis ; 222(11): 1894-1901, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479636

RESUMO

Marburg virus (MARV) is a filovirus with documented human case-fatality rates of up to 90%. Here, we evaluated the therapeutic efficacy of remdesivir (GS-5734) in nonhuman primates experimentally infected with MARV. Beginning 4 or 5 days post inoculation, cynomolgus macaques were treated once daily for 12 days with vehicle, 5 mg/kg remdesivir, or a 10-mg/kg loading dose followed by 5 mg/kg remdesivir. All vehicle-control animals died, whereas 83% of animals receiving a 10-mg/kg loading dose of remdesivir survived, as did 50% of animals receiving a 5-mg/kg remdesivir regimen. Remdesivir-treated animals exhibited improved clinical scores, lower plasma viral RNA, and improved markers of kidney function, liver function, and coagulopathy versus vehicle-control animals. The small molecule remdesivir showed therapeutic efficacy in this Marburg virus disease model with treatment initiation 5 days post inoculation, supporting further assessment of remdesivir for the treatment of Marburg virus disease in humans.


Assuntos
Antimetabólitos/uso terapêutico , Antivirais/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Doenças dos Macacos/tratamento farmacológico , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Estimativa de Kaplan-Meier , Macaca fascicularis , Masculino , Doença do Vírus de Marburg/mortalidade , Doença do Vírus de Marburg/patologia , Doença do Vírus de Marburg/virologia , Doenças dos Macacos/mortalidade , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , RNA Viral
5.
Emerg Infect Dis ; 26(7): 1553-1556, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568043

RESUMO

A 46-year-old patient with previously documented Ebola virus persistence in his ocular fluid, associated with severe panuveitis, developed a visually significant cataract. A multidisciplinary approach was taken to prevent and control infection. Ebola virus persistence was assessed before and during the operation to provide safe, vision-restorative phacoemulsification surgery.


Assuntos
Catarata , Ebolavirus , Doença pelo Vírus Ebola , Olho , Humanos , Pessoa de Meia-Idade , Sobreviventes
6.
Annu Rev Pharmacol Toxicol ; 57: 329-348, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27959624

RESUMO

Despite the unprecedented Ebola virus outbreak response in West Africa, no Ebola medical countermeasures have been approved by the US Food and Drug Administration. However, multiple valuable lessons have been learned about the conduct of clinical research in a resource-poor, high risk-pathogen setting. Numerous therapeutics were explored or developed during the outbreak, including repurposed drugs, nucleoside and nucleotide analogues (BCX4430, brincidofovir, favipiravir, and GS-5734), nucleic acid-based drugs (TKM-Ebola and AVI-7537), and immunotherapeutics (convalescent plasma and ZMapp). We review Ebola therapeutics progress in the aftermath of the West Africa Ebola virus outbreak and attempt to offer a glimpse of a path forward.


Assuntos
Antivirais/uso terapêutico , Surtos de Doenças/prevenção & controle , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Adenina/análogos & derivados , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , África Ocidental/epidemiologia , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Antivirais/farmacologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Humanos , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Purina/uso terapêutico , Pirrolidinas , Ribonucleotídeos/farmacologia , Ribonucleotídeos/uso terapêutico
7.
PLoS Pathog ; 14(7): e1007125, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001425

RESUMO

Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-priority emerging diseases for which countermeasures are urgently needed. Because arenavirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-evasion, we used an unbiased proteomic approach to identify NP-interacting proteins in human cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propagation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent on its ATPase and Helicase activities. Our results uncover novel mechanisms used by arenaviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a potential host target for developing new therapies against highly pathogenic arenaviruses.


Assuntos
Infecções por Arenaviridae/metabolismo , RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Evasão da Resposta Imune/imunologia , Replicação Viral/fisiologia , Infecções por Arenaviridae/imunologia , Arenavirus , Linhagem Celular , RNA Helicases DEAD-box/imunologia , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Proteínas do Core Viral/imunologia , Proteínas do Core Viral/metabolismo
8.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32888050

RESUMO

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais/classificação , Terminologia como Assunto
9.
Nature ; 508(7496): 402-5, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24590073

RESUMO

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Infecções por Filoviridae/prevenção & controle , Infecções por Filoviridae/virologia , Filoviridae/efeitos dos fármacos , Nucleosídeos de Purina/farmacologia , Adenina/análogos & derivados , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacocinética , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Animais de Doenças , Ebolavirus/efeitos dos fármacos , Filoviridae/enzimologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Injeções Intramusculares , Macaca fascicularis/virologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/virologia , Marburgvirus/efeitos dos fármacos , Nucleosídeos de Purina/administração & dosagem , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacocinética , Pirrolidinas , RNA/biossíntese , Fatores de Tempo
10.
Proc Natl Acad Sci U S A ; 114(26): E5158-E5166, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28584101

RESUMO

Botulism is characterized by flaccid paralysis, which can be caused by intoxication with any of the seven known serotypes of botulinum neurotoxin (BoNT), all of which disrupt synaptic transmission by endoproteolytic cleavage of SNARE proteins. BoNT serotype A (BoNT/A) has the most prolonged or persistent effects, which can last several months, and exerts its effects by specifically cleaving and inactivating SNAP25. A major factor contributing to the persistence of intoxication is the long half-life of the catalytic light chain, which remains enzymatically active months after entry into cells. Here we report that BoNT/A catalytic light chain binds to, and is a substrate for, the ubiquitin ligase HECTD2. However, the light chain evades proteasomal degradation by the dominant effect of a deubiquitinating enzyme, VCIP135/VCPIP1. This deubiquitinating enzyme binds BoNT/A light chain directly, with the two associating in cells through the C-terminal 77 amino acids of the light chain protease. The development of specific DUB inhibitors, together with inhibitors of BoNT/A proteolytic activity, may be useful for reducing the morbidity and public health costs associated with BoNT/A intoxication and could have potential biodefense implications.


Assuntos
Toxinas Botulínicas Tipo A/farmacocinética , Toxinas Botulínicas Tipo A/toxicidade , Endopeptidases/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Endopeptidases/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
J Gen Virol ; 100(6): 911-912, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021739

RESUMO

Members of the family Filoviridae produce variously shaped, often filamentous, enveloped virions containing linear non-segmented, negative-sense RNA genomes of 15-19 kb. Several filoviruses (e.g., Ebola virus) are pathogenic for humans and are highly virulent. Several filoviruses infect bats (e.g., Marburg virus), whereas the hosts of most other filoviruses are unknown. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on Filoviridae, which is available at www.ictv.global/report/filoviridae.


Assuntos
Filoviridae/classificação , Animais , Filoviridae/genética , Genoma Viral/genética , Humanos , RNA Viral/genética
12.
Clin Proteomics ; 16: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774579

RESUMO

BACKGROUND: In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host's immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. METHODS: Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC-MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. RESULTS: A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. CONCLUSIONS: These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections.

14.
Arch Virol ; 164(4): 1233-1244, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30663023

RESUMO

In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Mononegavirais/classificação , Mononegavirais/genética , Mononegavirais/isolamento & purificação , Filogenia , Virologia/organização & administração
15.
Proc Natl Acad Sci U S A ; 113(29): E4133-42, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382155

RESUMO

Vaccines have had broad medical impact, but existing vaccine technologies and production methods are limited in their ability to respond rapidly to evolving and emerging pathogens, or sudden outbreaks. Here, we develop a rapid-response, fully synthetic, single-dose, adjuvant-free dendrimer nanoparticle vaccine platform wherein antigens are encoded by encapsulated mRNA replicons. To our knowledge, this system is the first capable of generating protective immunity against a broad spectrum of lethal pathogen challenges, including H1N1 influenza, Toxoplasma gondii, and Ebola virus. The vaccine can be formed with multiple antigen-expressing replicons, and is capable of eliciting both CD8(+) T-cell and antibody responses. The ability to generate viable, contaminant-free vaccines within days, to single or multiple antigens, may have broad utility for a range of diseases.


Assuntos
Dendrímeros/uso terapêutico , Nanopartículas/uso terapêutico , RNA/uso terapêutico , Vacinas , Animais , Linhagem Celular , Ebolavirus/efeitos dos fármacos , Feminino , Células HeLa , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Orthomyxoviridae/prevenção & controle , Ratos , Linfócitos T/imunologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/prevenção & controle
16.
J Infect Dis ; 217(12): 1952-1956, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29584885

RESUMO

The use of ribavirin to treat Crimean-Congo hemorrhagic fever virus (CCHFV) infection has been controversial, based on uncertainties about its antiviral efficacy in clinical case studies. We studied the effect of ribavirin treatment on viral populations in a recent case by deep-sequencing analysis of plasma samples obtained from a CCHFV-infected patient before, during, and after a 5-day regimen of ribavirin treatment. The CCHFV load dropped during ribavirin treatment, and subclonal diversity (transitions) and indels increased in viral genomes during treatment. Although the results are based on a single case, these data demonstrate the mutagenic effect of ribavirin on CCHFV in vivo.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Febre Hemorrágica da Crimeia/tratamento farmacológico , Ribavirina/uso terapêutico , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/imunologia , Humanos
17.
J Infect Dis ; 218(suppl_5): S553-S564, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29939318

RESUMO

Background: Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods: We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results: Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions: These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.


Assuntos
Anticorpos Antivirais/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinação , Animais , Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/mortalidade , Concentração de Íons de Hidrogênio , Macaca fascicularis , Nucleoproteínas/imunologia , Vírion/imunologia
18.
N Engl J Med ; 373(4): 339-48, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26200980

RESUMO

BACKGROUND: AVI-7288 is a phosphorodiamidate morpholino oligomer with positive charges that targets the viral messenger RNA that encodes Marburg virus (MARV) nucleoprotein. Its safety in humans is undetermined. METHODS: We assessed the efficacy of AVI-7288 in a series of studies involving a lethal challenge with MARV in nonhuman primates. The safety of AVI-7288 was evaluated in a randomized, multiple-ascending-dose study in which 40 healthy humans (8 humans per dose group) received 14 once-daily infusions of AVI-7288 (1 mg, 4 mg, 8 mg, 12 mg, or 16 mg per kilogram of body weight) or placebo, in a 3:1 ratio. We estimated the protective dose in humans by comparing pharmacokinetic variables in infected nonhuman primates, uninfected nonhuman primates, and uninfected humans. RESULTS: Survival in infected nonhuman primates was dose-dependent, with survival rates of 0%, 30%, 59%, 87%, 100%, and 100% among monkeys treated with 0 mg, 3.75 mg, 7.5 mg, 15 mg, 20 mg, and 30 mg of AVI-7288 per kilogram, respectively (P<0.001 with the use of the log-rank test for the comparison of survival across groups). No safety concern was identified at doses up to 16 mg per kilogram per day in humans. No serious adverse events were reported. Drug exposure (the area under the curve) was dose-dependent in both nonhuman primates and humans; drug clearance was independent of dose but was higher in nonhuman primates than in humans. The protective dose in humans was initially estimated, on the basis of exposure, to be 9.6 mg per kilogram per day (95% confidence interval, 6.6 to 12.5) for 14 days. Monte Carlo simulations supported a dose of 11 mg per kilogram per day to match the geometric mean protective exposure in nonhuman primates. CONCLUSIONS: This study shows that, on the basis of efficacy in nonhuman primates and pharmacokinetic data in humans, AVI-7288 has potential as postexposure prophylaxis for MARV infection in humans. (Funded by the Department of Defense; ClinicalTrials.gov number, NCT01566877.).


Assuntos
Antivirais/administração & dosagem , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus , Morfolinos/administração & dosagem , Animais , Antivirais/efeitos adversos , Antivirais/farmacocinética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Estimativa de Kaplan-Meier , Macaca fascicularis , Doença do Vírus de Marburg/mortalidade , Marburgvirus/genética , Morfolinos/efeitos adversos , Morfolinos/farmacocinética , RNA Mensageiro , RNA Viral
19.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794043

RESUMO

There is an urgent need for therapeutic development to combat infections caused by Rift Valley fever virus (RVFV), which causes devastating disease in both humans and animals. In an effort to repurpose drugs for RVFV treatment, our previous studies screened a library of FDA-approved drugs. The most promising candidate identified was the hepatocellular and renal cell carcinoma drug sorafenib. Mechanism-of-action studies indicated that sorafenib targeted a late stage in virus infection and caused a buildup of virions within cells. In addition, small interfering RNA (siRNA) knockdown studies suggested that nonclassical targets of sorafenib are important for the propagation of RVFV. Here we extend our previous findings to identify the mechanism by which sorafenib inhibits the release of RVFV virions from the cell. Confocal microscopy imaging revealed that glycoprotein Gn colocalizes and accumulates within the endoplasmic reticulum (ER) and the transport of Gn from the Golgi complex to the host cell membrane is reduced. Transmission electron microscopy demonstrated that sorafenib caused virions to be present inside large vacuoles inside the cells. p97/valosin-containing protein (VCP), which is involved in membrane remodeling in the secretory pathway and a known target of sorafenib, was found to be important for RVFV egress. Knockdown of VCP resulted in decreased RVFV replication, reduced Gn Golgi complex localization, and increased Gn ER accumulation. The intracellular accumulation of RVFV virions was also observed in cells transfected with siRNA targeting VCP. Collectively, these data indicate that sorafenib causes a disruption in viral egress by targeting VCP and the secretory pathway, resulting in a buildup of virions within dilated ER vesicles.IMPORTANCE In humans, symptoms of RVFV infection mainly include a self-limiting febrile illness. However, in some cases, infected individuals can also experience hemorrhagic fever, neurological disorders, liver failure, and blindness, which could collectively be lethal. The ability of RVFV to expand geographically outside sub-Saharan Africa is of concern, particularly to the Americas, where native mosquito species are capable of virus transmission. Currently, there are no FDA-approved therapeutics to treat RVFV infection, and thus, there is an urgent need to understand the mechanisms by which the virus hijacks the host cell machinery to replicate. The significance of our research is in identifying the cellular target of sorafenib that inhibits RVFV propagation, so that this information can be used as a tool for the further development of therapeutics used to treat RVFV infection.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Febre do Vale de Rift/tratamento farmacológico , Vírus da Febre do Vale do Rift/fisiologia , Via Secretória/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Adenosina Trifosfatases/genética , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Niacinamida/farmacologia , Febre do Vale de Rift/metabolismo , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Sorafenibe , Células Tumorais Cultivadas , Proteína com Valosina , Células Vero , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
J Virol ; 91(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381571

RESUMO

A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Quinases Lim/antagonistas & inibidores , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/isolamento & purificação , Células Cultivadas , Ebolavirus/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/isolamento & purificação , HIV-1/fisiologia , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Vírus da Febre do Vale do Rift/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA