Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 121(4): 552-564, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063455

RESUMO

Our knowledge of the folding behavior of proteins from extremophiles is limited at this time. These proteins may more closely resemble the primordial proteins selected in early evolution under extreme conditions. The small archaeal modifier protein 1 (SAMP1) studied in this report is an 87-residue protein with a ß-grasp fold found in the halophile Haloferax volcanii from the Dead Sea. To gain insight into the effects of salt on the stability and folding mechanism of SAMP1, we conducted equilibrium and kinetic folding experiments as a function of sodium chloride concentration. The results revealed that increasing ionic strength accelerates refolding and slows down unfolding of SAMP1, giving rise to a pronounced salt-induced stabilization. With increasing NaCl concentration, the rate of folding observed via a combination of continuous-flow (0.1-2 ms time range) and stopped-flow measurements (>2 ms) exhibited a >100-fold increase between 0.1 and 1.5 M NaCl and leveled off at higher concentrations. Using the Linderström-Lang smeared charge formalism to model electrostatic interactions in ground and transition states encountered during folding, we showed that the observed salt dependence is dominated by Debye-Hückel screening of electrostatic repulsion among numerous negatively charged residues. Comparisons are also drawn with three well-studied mesophilic members of the ß-grasp superfamily: protein G, protein L, and ubiquitin. Interestingly, the folding rate of SAMP1 in 3 M sodium chloride is comparable to that of protein G, ubiquitin, and protein L at lower ionic strength. The results indicate the important role of electrostatic interactions in protein folding and imply that proteins have evolved to minimize unfavorable charge-charge interactions under their specific native conditions.


Assuntos
Haloferax volcanii , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinas , Haloferax volcanii/química , Cinética , Concentração Osmolar , Dobramento de Proteína , Cloreto de Sódio/farmacologia , Ubiquitina/química , Ubiquitinas/química
2.
J Comput Chem ; 42(9): 600-607, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33534913

RESUMO

Two proteins within the ß-grasp superfamily, the B1-domain of protein G and the small archaeal modifier protein 1, were investigated to elucidate the key determinants of structural stability at the level of individual interactions. These symmetrical proteins both contain two ß-hairpins which form a sheet flanked by a central α-helix. They were subjected to high temperature molecular dynamics simulations and the detailed behavior of each long-range interaction was characterized. The results revealed that in GB1 the most stable region was the C-terminal hairpin and in SAMP1 it was the opposite, the N-terminal hairpin. Experimental results for GB1 support this finding. In conclusion, it appears that the difference in the location and number of hydrophobic interactions dictate the differential stability which is accommodated due to structural symmetry of the ß-grasp fold. Thus, the hairpins are interchangeable and in nature this lends itself to adaptability and flexibility.


Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Haloferax volcanii/química , Streptococcus/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estabilidade Proteica
3.
IEEE Trans Nanobioscience ; 15(2): 140-7, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27071185

RESUMO

The B1 domain of protein G (GB1) is a small, 56 amino acid bacterial immunoglobulin-binding protein with a 4ß+ α fold. Architecturally, it is composed of a two-layer sandwich consisting of a four-stranded ß -sheet that packs against an α -helix. Using several bioinformatics approaches, we investigated which residues may be key determinants of this fold. We identified nine structurally conserved amino acids using a conservation analysis and propose they are critical to forming and stabilizing the fold. The nine conserved residues form a predominantly hydrophobic nucleus within the core of GB1. A network analysis of all the long-range interactions in the structure of GB1 in concert with a betweenness centrality analysis revealed the relative significance of each conserved amino acid residue based on the number and location of the interactions. This bioinformatics analysis provides an important foundation for the design and interpretation of both computational and experimental work which may be helpful in solving the protein folding problem.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA