Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066066

RESUMO

This work explores the transformative role of graphene in enhancing the performance of surface plasmon resonance (SPR)-based biosensors. The motivation for this review stems from the growing interest in the unique properties of graphene, such as high surface area, excellent electrical conductivity, and versatile functionalization capabilities, which offer significant potential to improve the sensitivity, specificity, and stability of SPR biosensors. This review systematically analyzes studies published between 2010 and 2023, covering key metrics of biosensor performance. The findings reveal that the integration of graphene consistently enhances sensitivity. Specificity, although less frequently reported numerically, showed promising results, with high specificity achieved at sub-nanomolar concentrations. Stability enhancements are also significant, attributed to the protective properties of graphene and improved biomolecule adsorption. Future research should focus on mechanistic insights, optimization of integration techniques, practical application testing, scalable fabrication methods, and comprehensive comparative studies. Our findings provide a foundation for future research, aiming to further optimize and harness the unique physical properties of graphene to meet the demands of sensitive, specific, stable, and rapid biosensing in various practical applications.


Assuntos
Técnicas Biossensoriais , Grafite , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Grafite/química , Técnicas Biossensoriais/métodos , Humanos
2.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838844

RESUMO

In this study, we speculate that the hydroxyl-containing benzo[b]thiophene analogs, 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP), might possess antiproliferative activity against cancer cells. Hydroxyl-containing BP and EP show selectivity towards laryngeal cancer cells (HEp2), with IC50 values of 27.02 ± 1.23 and 35.26 ± 2.15 µM, respectively. The hydroxyl group present in the third position is responsible for the anticancer activity and is completely abrogated when the hydroxyl group is masked. BP and EP enhance the antioxidant enzyme activity and reduce the ROS production, which are correlated with the antiproliferative effect in HEp-2 cells. An increase in the BAX/BCL-2 ratio occurs during the BP and EP treatment and activates the caspase cascade, resulting in apoptosis stimulation. It also arrests the cells in the Sub-G1 phase, indicating the induction of apoptosis. The molecular docking and simulation studies predicted a strong interaction between BP and the CYP1A2 protein, which could aid in combinational therapy by enhancing the bioavailability of the drugs. BP and EP possess an antioxidant property with low antiproliferative effects (~5.18 µg/mL and ~7.8 µg/mL) as a standalone drug, therefore, they can be combined with other drugs for effective chemotherapy that might trigger the effect of pro-oxidant drug on healthy cells.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Laríngeas , Humanos , Neoplasias Laríngeas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Fase G1 , Carcinoma/tratamento farmacológico , Proliferação de Células
3.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513298

RESUMO

Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and ß-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and ß-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The hybridization by the two biopolymers resulted in notable increases in the 5-Fu loading capacities, to 218.2 mg/g (CS/ZA) and 291.3 mg/g (CD/ZA), as compared to ZA (134.2 mg/g). The loading behaviors using ZA as well as CS/ZA and CD/ZA were illustrated based on the classic kinetics properties of pseudo-first-order kinetics (R2 > 0.95) and the traditional Langmuir isotherm (R2 = 0.99). CD/ZA shows a significantly higher active site density (102.7 mg/g) in comparison to CS/ZA (64 mg/g) and ZA (35.8 mg/g). The number of loaded 5-Fu per site of ZA, CS/ZA, and CD/ZA (>1) validates the vertical ordering of the loaded drug ions by multi-molecular processes. These processes are mainly physical mechanisms based on the determined Gaussian energy (<8 kJ/mol) and loading energy (<40 kJ/mol). Both the CS/ZA and CD/ZA 5-Fu release activities display continuous and controlled profiles up to 80 h, with CD/ZA exhibiting much faster release. According to the release kinetics studies, the release processes contain non-Fickian transport release properties, suggesting cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/ZA (11.72% cell viability), 5-Fu/CS/ZA (5.43% cell viability), and 5-Fu/CD/ZA (1.83% cell viability).


Assuntos
Antineoplásicos , Quitosana , Zeolitas , beta-Ciclodextrinas , Fluoruracila/farmacologia , Fluoruracila/química , Quitosana/química , Cinética , Portadores de Fármacos/química , beta-Ciclodextrinas/química
4.
Molecules ; 28(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446820

RESUMO

Natural kaolinite underwent advanced morphological-modification processes that involved exfoliation of its layers into separated single nanosheets (KNs) and scrolled nanoparticles as nanotubes (KNTs). Synthetic nanostructures have been characterized as advanced and effective oxaliplatin-medication (OXAP) delivery systems. The morphological-transformation processes resulted in a remarkable enhancement in the loading capacity to 304.9 mg/g (KNs) and 473 mg/g (KNTs) instead of 29.6 mg/g for raw kaolinite. The loading reactions that occurred by KNs and KNTs displayed classic pseudo-first-order kinetics (R2 > 0.90) and conventional Langmuir isotherms (R2 = 0.99). KNTs exhibit a higher active site density (80.8 mg/g) in comparison to KNs (66.3 mg/g) and raw kaolinite (6.5 mg/g). Furthermore, compared to KNs and raw kaolinite, each site on the surface of KNTs may hold up to six molecules of OXAP (n = 5.8), in comparison with five molecules for KNs. This was accomplished by multi-molecular processes, including physical mechanisms considering both the Gaussian energy (<8 KJ/mol) and the loading energy (<40 KJ/mol). The release activity of OXAP from KNs and KNTs exhibits continuous and regulated profiles up to 100 h, either by KNs or KNTs, with substantially faster characteristics for KNTs. Based on the release kinetic investigations, the release processes have non-Fickian transport-release features, indicating cooperative-diffusion and erosion-release mechanisms. The synthesized structures have a significant cytotoxicity impact on HCT-116 cancer cell lines (KNs (71.4% cell viability and 143.6 g/mL IC-50); KNTs (11.3% cell viability and 114.3 g/mL IC-50). Additionally, these carriers dramatically increase OXAP's cytotoxicity (2.04% cell viability, 15.4 g/mL IC-50 (OXAP/KNs); 0.6% cell viability, 4.5 g/mL IC-50 (OXAP/KNTs)).


Assuntos
Caulim , Nanotubos , Caulim/farmacologia , Caulim/química , Oxaliplatina/farmacologia , Cinética , Preparações Farmacêuticas
5.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570864

RESUMO

Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared to raw bentonite. The modification process strongly induced loading properties that increased to 214.4 mg/g (EXBE) and 282.6 mg/g (Mth/EXBE) instead of 124.9 mg/g for bentonite. The loading behaviors were illustrated based on the kinetic (pseudo-first-order model), classic isotherm (Langmuir model), and advanced isotherm modeling (monolayer model of one energy). The Mth/EBE carrier displays significantly higher loading site density (95.9 mg/g) as compared to EXBE (66.2 mg/g) and BE (44.9 mg/g). The loading numbers of 5-Fu in each site of BE, EXBE, and Mth/EXBE (>1) reflect the vertical orientation of these loaded ions involving multi-molecular processes. The loading processes that occurred appeared to be controlled by complex physical and weak chemical mechanisms, considering both Gaussian energy (<8 KJ/mol) as well as loading energy (<40 KJ/mol). The releasing patterns of EXBE and Mth/EXBE exhibit prolonged and continuous properties up to 100 h, with Mth/EXBE displaying much faster behaviors. Based on the release kinetic modeling, the release reactions exhibit non-Fickian transport release properties, validating cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/BE (8.6% cell viability), 5-Fu/EXBE (2.21% cell viability), and 5-Fu/Mth/EXBE (0.73% cell viability).


Assuntos
Bentonita , Fluoruracila , Fluoruracila/farmacologia , Fluoruracila/química , Bentonita/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Íons
6.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067437

RESUMO

(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-ß-cyclodextrin (Me-ß-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-ß-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-ß-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-ß-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.


Assuntos
Extrato de Sementes de Uva , Nanopartículas , Humanos , Extrato de Sementes de Uva/farmacologia , Dopamina , Pós , Nanopartículas/química , Crioprotetores , Liofilização/métodos , Sacarose/química , Tamanho da Partícula
7.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175102

RESUMO

Brown macroalgae (BMG) were used as carriers for ZnO (ZnO/BMG) and cobalt-doped ZnO (Co-ZnO/BMG) via facile microwave-assisted hydrothermal synthesis. The multifunctional structures of synthesized composites were evaluated as enhanced antioxidant and anti-diabetic agents based on the synergistic effects of ZnO, Co-ZnO, and BMG. BMG substrate incorporation and cobalt doping notably enhanced the bioactivity of the synthesized ZnO nanoparticles. As an antioxidant, the Co-ZnO/BMG composite exhibited highly effective scavenging properties for the common free reactive oxygen radicals (DPPH [89.6 ± 1.5%], nitric oxide [90.2 ± 1.3%], ABTS [87.7 ± 1.8%], and O2●- [46.7 ± 1.9%]) as compared to ascorbic acid. Additionally, its anti-diabetic activity was enhanced significantly and strongly inhibited essential oxidative enzymes (porcine α-amylase (90.6 ± 1.5%), crude α-amylase (84.3 ± 1.8%), pancreatic α-glucosidase (95.7 ± 1.4%), crude intestinal α-glucosidase (93.4 ± 1.8%), and amyloglucosidase (96.2 ± 1.4%)). Co-ZnO/BMG inhibitory activity was higher than that of miglitol, and in some cases, higher than or close to that of acarbose. Therefore, the synthetic Co-ZnO/BMG composite can be used as a commercial anti-diabetic and antioxidant agent, considering the cost and adverse side effects of current drugs. The results also demonstrate the impact of cobalt doping and BMG integration on the biological activity of ZnO.


Assuntos
Diabetes Mellitus , Nanopartículas Metálicas , Sargassum , Alga Marinha , Óxido de Zinco , Animais , Suínos , Antioxidantes/farmacologia , Antioxidantes/química , Sargassum/metabolismo , Óxido de Zinco/farmacologia , Óxido de Zinco/química , alfa-Glucosidases , Hipoglicemiantes/farmacologia , alfa-Amilases , Cobalto/química , Nanopartículas Metálicas/química , Alga Marinha/metabolismo
8.
Angew Chem Int Ed Engl ; 59(52): 23706-23715, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32886436

RESUMO

A novel family of nanocarbon-based materials was designed, synthesized, and probed within the context of charge-transfer cascades. We integrated electron-donating ferrocenes with light-harvesting/electron-donating (metallo)porphyrins and electron-accepting graphene nanoplates (GNP) into multicomponent conjugates. To control the rate of charge flow between the individual building blocks, we bridged them via oligo-p-phenyleneethynylenes of variable lengths by ß-linkages and the Prato-Maggini reaction. With steady-state absorption, fluorescence, Raman, and XPS measurements we realized the basic physico-chemical characterization of the photo- and redox-active components and the multicomponent conjugates. Going beyond this, we performed transient absorption measurements and corroborated by single wavelength and target analyses that the selective (metallo)porphyrin photoexcitation triggers a cascade of charge transfer events, that is, charge separation, charge shift, and charge recombination, to enable the directed charge flow. The net result is a few nanosecond-lived charge-separated state featuring a GNP-delocalized electron and a one-electron oxidized ferrocenium.

9.
Phys Chem Chem Phys ; 20(40): 25683-25692, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30255882

RESUMO

Perovskite solar cells (PSCs) based on organic-inorganic metal halide perovskites are a recent ground-breaking advancement in attaining power conversion efficiencies exceeding 21%. However, the toxicity of lead in these PSCs could be a deterrent for large-scale development due to the environmental concerns. The methylammonium tin triiodide (CH3NH3SnI3) perovskite has been successfully employed in lead-free PSCs as an alternative to CH3NH3PbI3 perovskite. The PSCs have mostly been realized with a highly expensive spiro-OMeTAD hole-transporting material (HTM). Herein, copper thiocyanate (CuSCN) was implemented as a HTM instead of the highly expensive spiro-OMeTAD counterpart. The results show that CuSCN is a promising HTM for the lead-free CH3NH3SnI3-based PSCs. We investigated and optimized the parameters of the lead-free CH3NH3SnI3-based PSCs with the CuSCN HTM. The simulated device shows a power conversion efficiency exceeding 26% under AM 1.5G illumination and an absorption onset up to 1080 nm. The reported CH3NH3SnI3-based PSCs provide a viable path to the realization of environmentally benign, low-cost, and high-efficiency PSCs.

10.
Nanotechnology ; 28(35): 355502, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28649968

RESUMO

Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

11.
Nanomedicine ; 12(6): 1511-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27013131

RESUMO

MicroRNAs (miRNAs) directly regulate gene expression at a post-transcriptional level and represent an attractive therapeutic target for a wide range of diseases. Here, we report a novel strategy for delivering miRNAs to endothelial cells (ECs) to regulate angiogenesis, using polymer functionalized carbon nanotubes (CNTs). CNTs were coated with two different polymers, polyethyleneimine (PEI) or polyamidoamine dendrimer (PAMAM), followed by conjugation of miR-503 oligonucleotides as recognized regulators of angiogenesis. We demonstrated a reduced toxicity for both polymer-coated CNTs, compared with pristine CNTs or polymers alone. Moreover, polymer-coated CNT stabilized miR-503 oligonucleotides and allowed their efficient delivery to ECs. The functionality of PAMAM-CNT-miR-503 complexes was further demonstrated in ECs through regulation of target genes, cell proliferation and angiogenic sprouting and in a mouse model of angiogenesis. This comprehensive series of experiments demonstrates that the use of polyamine-functionalized CNTs to deliver miRNAs is a novel and effective means to regulate angiogenesis.


Assuntos
Células Endoteliais , MicroRNAs , Nanotubos de Carbono , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Poliaminas , Polietilenoimina
12.
Nanomedicine ; 12(2): 333-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26707820

RESUMO

Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. FROM THE CLINICAL EDITOR: Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials.


Assuntos
Materiais Biocompatíveis/metabolismo , Carbono/metabolismo , Nanoestruturas , Animais , Biocatálise , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/toxicidade , Carbono/química , Carbono/farmacocinética , Carbono/toxicidade , Fulerenos/química , Fulerenos/metabolismo , Fulerenos/farmacocinética , Fulerenos/toxicidade , Grafite/química , Grafite/metabolismo , Grafite/farmacocinética , Grafite/toxicidade , Humanos , Metabolismo dos Lipídeos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/toxicidade , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Óxidos/química , Óxidos/metabolismo , Óxidos/farmacocinética , Óxidos/toxicidade , Coroa de Proteína/metabolismo
13.
J Nanosci Nanotechnol ; 14(1): 98-114, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730253

RESUMO

The recent advent of nanomedicine holds potential to revolutionize cancer therapy. This innovative discipline has paved the way for the emergence of a new class of drugs based on nanoengineered particles. These "nanodrugs" are designed to greatly enhance drug therapeutic indices. First-generation nanodrugs consisted of conventional anti-cancer drugs loaded into/onto nanoengineered particles (nanocarriers) devoid of targeting features (non-targeted nanodrugs). Non-targeted nanodrugs have provided the opportunity to carry large amounts of drugs, including poorly water-soluble and/or permeable drugs, to several types of tumors, improving the therapeutic index with respect to comparable free drugs. Although effective, the primary delivery mechanism of non-targeted nanodrugs was through passive tissue accumulation, due to pathophysiological differences between tumor-associated and healthy vessels, and through non-specific targeting of cell subsets, posing the danger of off-target binding and effects. Recently, the therapeutic indices of certain anti-cancer drugs were further improved by attaching targeting ligands to nanodrugs (targeted-nanodrugs). Targeted-nanodrugs selectively bind to cognate receptors expressed on target cells and enter cells more efficiently than non-targeted formulations. Although these advancements have been sufficiently beneficial to place targeted-nanodrugs into clinical development for use in cancer therapy, they also come at a price. The addition of ligands to drug-loaded nanocarriers often leads to additional synthesis steps and costs, and more complex biological performance relative to ligand-devoid nanodrugs. Here, we will discuss the benefits and challenges facing the addition of targeting features to nanodrugs for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Terapia de Alvo Molecular/métodos , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Antineoplásicos/química , Desenho de Fármacos , Humanos
14.
RSC Adv ; 14(12): 8178-8187, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38469189

RESUMO

Supercapacitors (SCs) have emerged as attractive energy storage devices due to their rapid charge/discharge rates, long cycle life, and high-power density. However, the development of innovative electrode materials to achieve high-performance remains crucial to meet future requirements in supercapacitor technology. In this work, we have explored the potential of a microwave-engineered NiZrO3@GNP composite as a promising electrode material for SCs. A microwave assisted hydrothermal approach was adopted for the fabrication of the NiZrO3@GNP nanocomposite. Structural and morphological investigations showed its structural richness and its chemical compositions. When applied as a SC electrode, this innovative combination exhibits battery-like behaviour with higher specific capacity (577.63 C g-1) with good cyclic stability, and good performance. We have assembled an asymmetric-type two-electrode SC device and analysed its electrochemical features. This NiZrO3@GNP device exhibits the specific capacity of 47 C g-1 with capacitance retention of 70% after 2000 charge-discharge cycles. Further research on optimizing the synthesis process and exploring different device configurations could pave the way for even higher-performance supercapacitors in the future.

15.
RSC Adv ; 14(5): 3209-3231, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249671

RESUMO

Laminarin, a complicated polysaccharide originating from brown algae, has emerged as a compelling candidate in the domain of biomedical research. This enigmatic molecule, composed of glucose units associated with both ß-1,3 and ß-1,6 glycosidic bonds, possesses an array of remarkable characteristics that render it auspicious for multifaceted biomedical applications. This review investigates the comprehensive potential of laminarin in the biomedical domain, emphasizing its remarkable biocompatibility, low cytotoxicity, and cell proliferation support. Laminarin's immunomodulatory attributes position it as an encouraging contender in immunotherapy and the development of vaccines. Moreover, its anti-inflammatory and antioxidant characteristics provide a promising avenue for combatting conditions associated with oxidative stress. In particular, laminarin excels as a drug delivery vehicle owing to its exceptional encapsulation capabilities emerging from its porous framework. Integrating pH and redox responsiveness in laminarin-based drug delivery systems is poised to redefine targeted therapies. Laminarin substantially contributes to tissue engineering by improving adhesion, migration of cells, and deposition of extracellular matrix. This augmentation magnifies the regenerative capability of tissue-engineered constructs, substantiated by the advancement of laminarin-based wound dressings and tissue scaffolds, marking considerable progress in the domain of wound healing and tissue regeneration. While laminarin exhibits substantial potential in biomedical applications, it remains in the initial phases of exploration. Comprehensive preclinical and clinical research is warranted to verify its effectiveness and safety across various applications. In essence, laminarin, a marine marvel, has the capability to remodel biomedical research, offering inventive solutions to complex difficulties.

16.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794548

RESUMO

The in situ study of fractal microstructure in nanocarbon polymers is an actual task for their application and for the improvement in their functional properties. This article presents a visualization of the bulk structural features of the composites using pulsed acoustic microscopy and synchrotron X-ray microtomography. This article presents details of fractal structure formation using carbon particles of different sizes and shapes-exfoliated graphite, carbon platelets and nanotubes. Individual structural elements of the composite, i.e., conglomerations of the particles in the air capsule as well as their distribution in the composite volume, were observed at the micro- and nanoscale. We have considered the influence of particle architecture on the fractal formation and elastic properties of the composite. Acoustic and X-ray imaging results were compared to validate the carbon agglomeration.

17.
RSC Adv ; 14(27): 19219-19256, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887635

RESUMO

Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.

18.
J Funct Biomater ; 15(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38391896

RESUMO

Enhancing nanoparticles' anti-cancer capabilities as drug carriers requires the careful adjustment of formulation parameters, including loading efficiency, drug/carrier ratio, and synthesis method. Small adjustments to these parameters can significantly influence the drug-loading efficiency of nanoparticles. Our study explored how chitosan and polyethylene glycol (PEG) coatings affect the structural properties, drug-loading efficiency, and anti-cancer efficacy of Fe3O4 nanoparticles (NPs). The loading efficiency of the NPs was determined using FTIR spectrometry and XRD. The quantity of chrysin incorporated into the coated NPs was examined using UV-Vis spectrometry. The effect of the NPs on cell viability and apoptosis was determined by employing the HCT 116 human colon carcinoma cell line. We showed that a two-fold increase in drug concentration did not impact the loading efficiency of Fe3O4 NPs coated with PEG. However, there was a 33 Å difference in the crystallite sizes obtained from chitosan-coated Fe3O4 NPs and drug concentrations of 1:0.5 and 1:2, resulting in decreased system stability. In conclusion, PEG coating exhibited a higher loading efficiency of Fe3O4 NPs compared to chitosan, resulting in enhanced anti-tumor effects. Furthermore, variations in the loaded amount of chrysin did not impact the crystallinity of PEG-coated NPs, emphasizing the stability and regularity of the system.

19.
Heliyon ; 10(11): e31086, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832266

RESUMO

The success of industrial operations depends on the effective identification, appraisal, and mitigation of possible hazards and associated environmental concerns. This report provides a complete review of environmental management techniques at the Sukari Gold Mine (SGM), located in the southeastern desert of Egypt. Extensive environmental measurements were taken to assess air and water quality, identify hazards, and analyze risks on the SGM premises. Air quality and noise intensity levels were measured at 39 places around the mine's working region. The findings found noncompliance with the Egyptian Environmental Law's (EEL4/94) noise exposure limitations, with the Power Generator House having the maximum noise levels at 107 dB. Remedial measures such as personal protective equipment (PPE) and exposure limit reduction strategies are being considered to address elevated noise levels. Measurements of particulate matter (PM10) and noxious gases (e.g., CO, SO2, NO2, HCN, and NH3) were conducted in workplace and ambient environments. Elevated PM10 concentrations were particularly concerning in underground regions, forcing the deployment of water depression techniques and improved PPE measures. While gas emissions from most activities remained under regulatory limits, select zones showed hydrogen cyanide (HCN) levels that exceeded permitted thresholds, necessitating specific control actions. Using hazard index (HI) and risk rating assessments, this study found different risk profiles across SGM's workplaces, focusing on high-risk regions for focused intervention. Additionally, a water assessment near a Tailing Storage Facility (TSF) was conducted to monitor the impact of mining activities on groundwater quality. The study revealed that groundwater in the region belongs to the Na-K-Cl-SO4 and Ca-Mg-Cl-SO4 water classes, with potential degradation attributed to high mineralization processes induced by aquifer materials and seawater intrusion. The findings underscore the importance of ongoing monitoring, control measures, and implementation of programs to ensure environmental sustainability and minimize risks associated with mining activities in the Sukari Gold Mines. This research highlights the imperative of continuous monitoring, proactive control measures, and the implementation of environmental initiatives to ensure the sustainability of mining operations within the Sukari Gold Mines.

20.
Bioconjug Chem ; 24(6): 852-8, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23682992

RESUMO

Recent evidence regarding the role of regulatory T cells (Treg) in tumor development has suggested that the manipulation of Treg function selectively in the tumor microenvironment would be a desirable immunotherapy approach. Targeting intratumor immune populations would reduce side effects on peripheral healthy cells and increase antitumor efficacy of immunotherapies. However, no current approaches are available which enable selective in vivo targeting of intratumor Treg or other immune cell subpopulations. Herein, we investigated the ability of ligands against Treg-specific receptors to drive selective internalization of PEG-modified single-walled carbon nanotubes (PEG-SWCNTs) into Treg residing in the tumor microenvironment. We focused our attention on the glucocorticoid-induced TNFR-related receptor (GITR), as it showed higher overexpression on intratumor vs peripheral (i.e., splenic) Treg compared to other reported Treg-specific markers (folate receptor 4, CD103, and CD39). Ex vivo investigations showed that the Treg targeting efficiency and selectivity of PEG-SWCNTs depended on incubation time, dose, number of ligands per nanotube, and targeted surface marker. In vivo investigations showed that PEG-SWCNTs armed with GITR ligands targeted Treg residing in a B16 melanoma more efficiently then intratumor non-Treg or splenic Treg. The latter result was achieved by exploiting a combination of passive tumor targeting due to enhanced tumor vascular permeability, naturally increased intratumor Treg vs effector T cell (Teff) ratio, and active targeting of markers that are enriched in intratumor vs splenic Treg. We also found that PEG-SWCNTs loaded with GITR ligands were internalized by Treg through receptor-mediated endocytosis and transported into the cytoplasm and nucleus ex vivo and in vivo. This is the first example of intratumor immune cell targeting and we hope it will pave the way to innovative immunotherapies against cancer.


Assuntos
Nanotubos de Carbono/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Polietilenoglicóis/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/química , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/imunologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA