Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechniques ; 40(3): 355-64, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16568824

RESUMO

The refinement of tightly regulated prokaryotic expression systems that permit functional expression of toxic recombinant proteins is a continually evolving process. Unfortunately, the current best promoter options are either tightly repressed and produce little protein, or produce substantial protein but lack the necessary repression to avoid mutations stimulated by leaky expression in the absence of inducer. In this report, we present three novel prokaryotic expression constructs that are tightly regulated by L-rhamnose and D-glucose. These expression vectors utilize the Escherichia coli rhaT promoter and corresponding regulatory genes to provide titratable, high-level protein yield without compromising clone integrity. Together, these components may enable the stable cloning and functional expression of otherwise toxic proteins.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/fisiologia , Regiões Promotoras Genéticas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/toxicidade , Ramnose/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Melhoramento Genético/métodos
2.
Vaccine ; 25(12): 2279-87, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17258845

RESUMO

In the midst of new investigations into the mechanisms of both delivery and protection of new vaccines and vaccine carriers, it has become clear that immunization with delivery mechanisms that do not involve living, replicating organisms are vastly preferred. In this report, non-replicating bacterial minicells simultaneously co-delivering the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) and the corresponding DNA vaccine were tested for the ability to generate protective cellular immune responses in mice. It was found that good protection (89%) was achieved after intramuscular administration, moderate protection (31%) was achieved after intranasal administration, and less protection (7%) was achieved following gastric immunization. These results provide a solid foundation on which to pursue the use of bacterial minicells as a non-replicating vaccine delivery platform.


Assuntos
Imunização/métodos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Nucleoproteínas/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células COS , Chlorocebus aethiops , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/virologia , Injeções Intramusculares , Coriomeningite Linfocítica/prevenção & controle , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Nucleoproteínas/genética , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
3.
Vaccine ; 24(33-34): 6009-17, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16806602

RESUMO

Recent events surrounding emerging infectious diseases, bioterrorism and increasing multidrug antibiotic resistance in bacteria have drastically increased current needs for effective vaccines. Many years of study have shown that live, attenuated pathogens are often more effective at delivering heterologous protein or DNA to induce protective immune responses. However, these vaccine carriers have inherent safety concerns that have limited their development and their use in many patient populations. Studies using nonliving delivery mechanisms have shown that providing both protein antigen and DNA encoding the antigen to an individual induces an improved, more protective immune response but rarely, if ever, are both delivered simultaneously. Here, non-replicating bacterial minicells derived from a commensal E. coli strain are shown to effectively induce antigen-specific immune responses after simultaneous protein and DNA delivery. These data demonstrate the potential use of achromosomal bacterial minicells as a vaccine carrier.


Assuntos
Formação de Anticorpos , Escherichia coli/genética , Proteínas de Fluorescência Verde/imunologia , Vacinas de DNA/imunologia , Vacinas Sintéticas/imunologia , Administração Intranasal , Animais , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/imunologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Injeções Intramusculares , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Vacinas de DNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA