Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(14): 3768-3773, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320963

RESUMO

Acid-sensing ion channels (ASICs) are proton-activated Na+ channels expressed in the nervous system, where they are involved in learning, fear behaviors, neurodegeneration, and pain sensation. In this work, we study the role in pH sensing of two regions of the ectodomain enriched in acidic residues: the acidic pocket, which faces the outside of the protein and is the binding site of several animal toxins, and the palm, a central channel domain. Using voltage clamp fluorometry, we find that the acidic pocket undergoes conformational changes during both activation and desensitization. Concurrently, we find that, although proton sensing in the acidic pocket is not required for channel function, it does contribute to both activation and desensitization. Furthermore, protonation-mimicking mutations of acidic residues in the palm induce a dramatic acceleration of desensitization followed by the appearance of a sustained current. In summary, this work describes the roles of potential pH sensors in two extracellular domains, and it proposes a model of acidification-induced conformational changes occurring in the acidic pocket of ASIC1a.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Sódio/metabolismo , Toxinas Biológicas/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína
2.
J Comput Chem ; 38(16): 1472-1478, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28211063

RESUMO

We used targeted molecular dynamics, informed by experimentally determined inter-atomic distances defining the pore region of open and closed states of the KvAP voltage-gated potassium channel, to generate a gating pathway of the pore domain in the absence of the voltage-sensing domains. We then performed umbrella sampling simulations along this pathway to calculate a potential of mean force that describes the free energy landscape connecting the closed and open conformations of the pore domain. The resulting energetic landscape displays three minima, corresponding to stable open, closed, and intermediate conformations with roughly similar stabilities. We found that the extent of hydration of the interior of the pore domain could influence the free energy landscape for pore opening/closing. © 2017 Wiley Periodicals, Inc.

3.
Proc Natl Acad Sci U S A ; 111(17): E1713-22, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733889

RESUMO

K(+) efflux through K(+) channels can be controlled by C-type inactivation, which is thought to arise from a conformational change near the channel's selectivity filter. Inactivation is modulated by ion binding near the selectivity filter; however, the molecular forces that initiate inactivation remain unclear. We probe these driving forces by electrophysiology and molecular simulation of MthK, a prototypical K(+) channel. Either Mg(2+) or Ca(2+) can reduce K(+) efflux through MthK channels. However, Ca(2+), but not Mg(2+), can enhance entry to the inactivated state. Molecular simulations illustrate that, in the MthK pore, Ca(2+) ions can partially dehydrate, enabling selective accessibility of Ca(2+) to a site at the entry to the selectivity filter. Ca(2+) binding at the site interacts with K(+) ions in the selectivity filter, facilitating a conformational change within the filter and subsequent inactivation. These results support an ionic mechanism that precedes changes in channel conformation to initiate inactivation.


Assuntos
Ativação do Canal Iônico , Canais de Potássio/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Íons/metabolismo , Modelos Biológicos , Simulação de Dinâmica Molecular , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Força Próton-Motriz , Termodinâmica
4.
Mycorrhiza ; 27(7): 695-708, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667402

RESUMO

In the arbuscular mycorrhizal (AM) symbiosis, plants satisfy part of their nitrogen (N) requirement through the AM pathway. In sorghum, the ammonium transporters (AMT) AMT3;1, and to a lesser extent AMT4, are induced in cells containing developing arbuscules. Here, we have characterized orthologs of AMT3;1 and AMT4 in four other grasses in addition to sorghum. AMT3;1 and AMT4 orthologous genes are induced in AM roots, suggesting that in the common ancestor of these five plant species, both AMT3;1 and AMT4 were already present and upregulated upon AM colonization. An artificial microRNA approach was successfully used to downregulate either AMT3;1 or AMT4 in rice. Mycorrhizal root colonization and hyphal length density of knockdown plants were not affected at that time, indicating that the manipulation did not modify the establishment of the AM symbiosis and the interaction between both partners. However, expression of the fungal phosphate transporter FmPT was significantly reduced in knockdown plants, indicating a reduction of the nutrient fluxes from the AM fungus to the plant. The AMT3;1 knockdown plants (but not the AMT4 knockdown plants) were significantly less stimulated in growth by AM fungal colonization, and uptake of both 15N and 33P from the AM fungal network was reduced. This confirms that N and phosphorus nutrition through the mycorrhizal pathway are closely linked. But most importantly, it indicates that AMT3;1 is the prime plant transporter involved in the mycorrhizal ammonium transfer and that its function during uptake of N cannot be performed by AMT4.


Assuntos
Proteínas de Transporte de Cátions/genética , Micorrizas/fisiologia , Proteínas de Plantas/genética , Poaceae/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Poaceae/microbiologia , Análise de Sequência de DNA
5.
Proc Natl Acad Sci U S A ; 110(47): 18856-61, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191046

RESUMO

The Sec61 translocon forms a pore to translocate polypeptide sequences across the membrane and offers a lateral gate for membrane integration of hydrophobic (H) segments. A central constriction of six apolar residues has been shown to form a seal, but also to determine the hydrophobicity threshold for membrane integration: Mutation of these residues in yeast Sec61p to glycines, serines, aspartates, or lysines lowered the hydrophobicity required for integration; mutation to alanines increased it. Whereas four leucines distributed in an oligo-alanine H segment were sufficient for 50% integration, we now find four leucines in the N-terminal half of the H segment to produce significantly more integration than in the C-terminal half, suggesting functional asymmetry within the translocon. Scanning a cluster of three leucines through an oligo-alanine H segment showed high integration levels, except around the position matching that of the hydrophobic constriction in the pore where integration was strongly reduced. Both asymmetry and the position effect of H-segment integration disappeared upon mutation of the constriction residues to glycines or serines, demonstrating that hydrophobicity at this position within the translocon is responsible for the phenomenon. Asymmetry was largely retained, however, when constriction residues were replaced by alanines. These results reflect on the integration mechanism of transmembrane domains and show that membrane insertion of H segments strongly depends not only on their intrinsic hydrophobicity but also on the local conditions in the translocon interior. Thus, the contribution of hydrophobic residues in the H segment is not simply additive and displays cooperativeness depending on their relative position.


Assuntos
Aminoácidos/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Conformação Proteica , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Mutação/genética , Transporte Proteico/genética , Canais de Translocação SEC , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Termodinâmica
6.
Biochemistry ; 54(40): 6195-206, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26381710

RESUMO

The ATP binding cassette (ABC) transporters ABCG2 and ABCB1 perform ATP hydrolysis-dependent efflux of structurally highly diverse compounds, collectively called allocrites. Whereas much is known about allocrite-ABCB1 interactions, the chemical nature and strength of ABCG2-allocrite interactions have not yet been assessed. We quantified and characterized interactions of allocrite with ABCG2 and ABCB1 using a set of 39 diverse compounds. We also investigated potential allocrite binding sites based on available transporter structures and structural models. We demonstrate that ABCG2 binds its allocrites from the lipid membrane, despite their hydrophilicity. Hence, binding of allocrite to both transporters is a two-step process, starting with a lipid-water partitioning step, driven mainly by hydrophobic interactions, followed by a transporter binding step in the lipid membrane. We show that binding of allocrite to both transporters increases with the number of hydrogen bond acceptors in allocrites. Scrutinizing the transporter translocation pathways revealed ample hydrogen bond donors for allocrite binding. Importantly, the hydrogen bond donor strength is, on average, higher in ABCG2 than in ABCB1, which explains the higher measured affinity of allocrite for ABCG2. π-π stacking and π-cation interactions play additional roles in binding of allocrite to ABCG2 and ABCB1. With this analysis, we demonstrate that these membrane-mediated weak electrostatic interactions between transporters and allocrites allow for transporter promiscuity toward allocrites. The different sensitivities of the transporters to allocrites' charge and amphiphilicity provide transporter specificity. In addition, we show that the different hydrogen bond donor strengths in the two transporters allow for affinity tuning.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Animais , Linhagem Celular , Humanos , Ligação de Hidrogênio , Hidrólise , Camundongos , Modelos Moleculares , Proteínas de Neoplasias/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Conformação Proteica , Termodinâmica
7.
J Am Chem Soc ; 137(13): 4300-3, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25794270

RESUMO

The relation between the sequence of a protein and its three-dimensional structure remains largely unknown. A lasting dream is to elucidate the side-chain-dependent driving forces that govern the folding process. Different structural data suggest that aromatic amino acids play a particular role in the stabilization of protein structures. To better understand the underlying mechanism, we studied peptides of the sequence EGAAXAASS (X = Gly, Ile, Tyr, Trp) through comparison of molecular dynamics (MD) trajectories and NMR residual dipolar coupling (RDC) measurements. The RDC data for aromatic substitutions provide evidence for a kink in the peptide backbone. Analysis of the MD simulations shows that the formation of internal hydrogen bonds underlying a helical turn is key to reproduce the experimental RDC values. The simulations further reveal that the driving force leading to such helical-turn conformations arises from the lack of hydration of the peptide chain on either side of the bulky aromatic side chain, which can potentially act as a nucleation point initiating the folding process.


Assuntos
Aminoácidos , Oligopeptídeos/química , Dobramento de Proteína , Água/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica
8.
FASEB J ; 27(12): 5034-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24018065

RESUMO

Epithelial Na(+) channel (ENaC)/degenerin family members are involved in mechanosensation, blood pressure control, pain sensation, and the expression of fear. Several of these channel types display a form of desensitization that allows the channel to limit Na(+) influx during prolonged stimulation. We used site-directed mutagenesis and chemical modification, functional analysis, and molecular dynamics simulations to investigate the role of the lower palm domain of the acid-sensing ion channel 1, a member of the ENaC/degenerin family. The lower palm domains of this trimeric channel are arranged around a central vestibule, at ∼20 Šabove the plasma membrane and are covalently linked to the transmembrane channel parts. We show that the lower palm domains approach one another during desensitization. Residues in the palm co-determine the pH dependence of desensitization, its kinetics, and the stability of the desensitized state. Mutations of palm residues impair desensitization by preventing the closing movement of the palm. Overexpression of desensitization-impaired channel mutants in central neurons allowed--in contrast to overexpression of wild type--a sustained signaling response to rapid pH fluctuations. We identify and describe here the function of an important regulatory domain that most likely has a conserved role in ENaC/degenerin channels.


Assuntos
Canais de Sódio Degenerina/metabolismo , Canais Epiteliais de Sódio/metabolismo , Ativação do Canal Iônico , Sequência de Aminoácidos , Animais , Canais de Sódio Degenerina/química , Canais de Sódio Degenerina/genética , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Xenopus
9.
Biochemistry ; 52(40): 7091-8, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24021113

RESUMO

The ammonium transporters of the Amt/Rh family facilitate the diffusion of ammonium across cellular membranes. Functional data suggest that Amt proteins, notably found in plants, transport the ammonium ion (NH4(+)), whereas human Rhesus (Rh) proteins transport ammonia (NH3). Comparison between the X-ray structures of the prokaryotic AmtB, assumed to be representative of Amt proteins, and the human RhCG reveals important differences at the level of their pore. Despite these important functional and structural differences between Amt and Rh proteins, studies of the AmtB transporter have led to the suggestion that proteins of both subfamilies work according to the same mechanism and transport ammonia. We performed molecular dynamics simulations of the AmtB and RhCG proteins under different water and ammonia occupancy states of their pore. Free energy calculations suggest that the probability of finding NH3 molecules in the pore of AmtB is negligible in comparison to finding water. The presence of water in the pore of AmtB could support the transport of proton. The pore lumen of RhCG is found to be more hydrophobic due to the presence of a phenylalanine conserved among Rh proteins. Simulations of RhCG also reveal that the signature histidine dyad is occasionally exposed to the extracellular bulk, which is never observed in AmtB. These different hydration patterns are consistent with the idea that Amt and Rh proteins are not functionally equivalent and that permeation takes place according to two distinct mechanisms.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicoproteínas de Membrana/metabolismo , Água/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Glicoproteínas de Membrana/genética , Simulação de Dinâmica Molecular , Termodinâmica
10.
J Biol Chem ; 287(47): 40091-8, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23019337

RESUMO

Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.


Assuntos
Ativação do Canal Iônico/fisiologia , Lipídeos de Membrana/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Canais de Potássio/química , Células Procarióticas/química , Elementos da Série dos Lantanídeos/química , Lipídeos de Membrana/metabolismo , Canais de Potássio/metabolismo , Células Procarióticas/metabolismo , Conformação Proteica
11.
J Struct Biol ; 177(1): 70-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21970948

RESUMO

The dynamic rearrangement of the actin cytoskeleton plays a key role in several cellular processes such as cell motility, endocytosis, RNA processing and chromatin organization. However, the supramolecular actin structures involved in the different processes remain largely unknown. One of the less studied forms of actin is the lower dimer (LD). This unconventional arrangement of two actin molecules in an antiparallel orientation can be detected by chemical crosslinking at the onset of polymerization in vitro. Moreover, evidence for a transient incorporation of LD into growing filaments and its ability to inhibit nucleation of F-actin filament assembly implicate that the LD pathway contributes to supramolecular actin patterning. However, a clear link from this actin species to a specific cellular function has not yet been established. We have developed an antibody that selectively binds to LD configurations in supramolecular actin structures assembled in vitro. This antibody allowed us to unveil the LD in different mammalian cells. In particular, we show an association of the antiparallel actin arrangement with the endocytic compartment at the cellular and ultrastructural level. Taken together, our results strongly support a functional role of LD in the patterning of supramolecular actin assemblies in mammalian cells.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/ultraestrutura , Mamíferos/metabolismo , Citoesqueleto de Actina/química , Animais , Linhagem Celular , Movimento Celular , Endocitose , Imunofluorescência/métodos , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão e Varredura , Microscopia Imunoeletrônica/métodos , Modelos Moleculares , Células PC12 , Polímeros/química , Estrutura Terciária de Proteína , Coelhos , Ratos
12.
J Am Chem Soc ; 134(25): 10419-27, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22631217

RESUMO

Proteins of the Amt/MEP family facilitate ammonium transport across the membranes of plants, fungi, and bacteria and are essential for growth in nitrogen-poor environments. Some are known to facilitate the diffusion of the neutral NH(3), while others, notably in plants, transport the positively charged NH(4)(+). On the basis of the structural data for AmtB from Escherichia coli , we illustrate the mechanism by which proteins from the Amt family can sustain electrogenic transport. Free energy calculations show that NH(4)(+) is stable in the AmtB pore, reaching a binding site from which it can spontaneously transfer a proton to a pore-lining histidine residue (His168). The substrate diffuses down the pore in the form of NH(3), while the excess proton is cotransported through a highly conserved hydrogen-bonded His168-His318 pair. This constitutes a novel permeation mechanism that confers to the histidine dyad an essential mechanistic role that was so far unknown.


Assuntos
Proteínas de Transporte de Cátions/química , Teoria Quântica , Compostos de Amônio Quaternário/química , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Modelos Biológicos , Simulação de Dinâmica Molecular , Compostos de Amônio Quaternário/metabolismo , Termodinâmica
13.
Open Biol ; 12(12): 220243, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541099

RESUMO

The extracellular Ca2+ concentration changes locally under certain physiological and pathological conditions. Such variations affect the function of ion channels of the nervous system and consequently also neuronal signalling. We investigated here the mechanisms by which Ca2+ controls the activity of acid-sensing ion channel (ASIC) 3. ASICs are neuronal, H+-gated Na+ channels involved in several physiological and pathological processes, including the expression of fear, learning, pain sensation and neurodegeneration after ischaemic stroke. It was previously shown that Ca2+ negatively modulates the ASIC pH dependence. While protons are default activators of ASIC3, this channel can also be activated at pH7.4 by the removal of the extracellular Ca2+. Two previous studies concluded that low pH opens ASIC3 by displacing Ca2+ ions that block the channel pore at physiological pH. We show here that an acidic residue, distant from the pore, together with pore residues, controls the modulation of ASIC3 by Ca2+. Our study identifies a new regulatory site in ASIC3 and demonstrates that ASIC3 activation involves an allosteric mechanism together with Ca2+ unbinding from the channel pore. We provide a molecular analysis of a regulatory mechanism found in many ion channels.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Prótons , Cálcio/metabolismo , Sítio Alostérico , Concentração de Íons de Hidrogênio , Íons
14.
J Biol Chem ; 285(21): 16315-29, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20299463

RESUMO

Acid-sensing ion channels (ASICs) are key receptors for extracellular protons. These neuronal nonvoltage-gated Na(+) channels are involved in learning, the expression of fear, neurodegeneration after ischemia, and pain sensation. We have applied a systematic approach to identify potential pH sensors in ASIC1a and to elucidate the mechanisms by which pH variations govern ASIC gating. We first calculated the pK(a) value of all extracellular His, Glu, and Asp residues using a Poisson-Boltzmann continuum approach, based on the ASIC three-dimensional structure, to identify candidate pH-sensing residues. The role of these residues was then assessed by site-directed mutagenesis and chemical modification, combined with functional analysis. The localization of putative pH-sensing residues suggests that pH changes control ASIC gating by protonation/deprotonation of many residues per subunit in different channel domains. Analysis of the function of residues in the palm domain close to the central vertical axis of the channel allowed for prediction of conformational changes of this region during gating. Our study provides a basis for the intrinsic ASIC pH dependence and describes an approach that can also be applied to the investigation of the mechanisms of the pH dependence of other proteins.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Substituição de Aminoácidos , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Canais de Sódio/química , Canais de Sódio/genética
15.
Nature ; 431(7010): 830-4, 2004 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-15483608

RESUMO

Potassium channels are essential for maintaining a normal ionic balance across cell membranes. Central to this function is the ability of such channels to support transmembrane ion conduction at nearly diffusion-limited rates while discriminating for K+ over Na+ by more than a thousand-fold. This selectivity arises because the transfer of the K+ ion into the channel pore is energetically favoured, a feature commonly attributed to a structurally precise fit between the K+ ion and carbonyl groups lining the rigid and narrow pore. But proteins are relatively flexible structures that undergo rapid thermal atomic fluctuations larger than the small difference in ionic radius between K+ and Na+. Here we present molecular dynamics simulations for the potassium channel KcsA, which show that the carbonyl groups coordinating the ion in the narrow pore are indeed very dynamic ('liquid-like') and that their intrinsic electrostatic properties control ion selectivity. This finding highlights the importance of the classical concept of field strength. Selectivity for K+ is seen to emerge as a robust feature of a flexible fluctuating pore lined by carbonyl groups.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais de Potássio/química , Canais de Potássio/metabolismo , Potássio/metabolismo , Sítios de Ligação , Cátions/metabolismo , Ligantes , Modelos Moleculares , Oxigênio/metabolismo , Sódio/metabolismo , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
16.
Front Mol Biosci ; 7: 162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850956

RESUMO

Voltage-gated potassium channels (Kv) allow ion permeation upon changes of the membrane electrostatic potential (Vm). Each subunit of these tetrameric channels is composed of six transmembrane helices, of which the anti-parallel helix bundle S1-S4 constitutes the voltage-sensor domain (VSD) and S5-S6 forms the pore domain. Here, using 82 molecular dynamics (MD) simulations involving 266 replicated VSDs, we report novel responses of the archaebacterial potassium channel KvAP to membrane polarization. We show that the S4 α-helix, which is straight in the experimental crystal structure solved under depolarized conditions (Vm ∼ 0), breaks into two segments when the cell membrane is hyperpolarized (Vm << 0), and reversibly forms a single straight helix following depolarization (Vm = 0). The outermost segment of S4 translates along the normal to the membrane, bringing new perspective to previously paradoxical accessibility experiments that were initially thought to imply the displacement of the whole VSD across the membrane. The novel model is applied through steered and unbiased MD simulations to the recently solved whole structure of KvAP. The simulations show that the resting state involves a re-orientation of the S5 α-helix by ∼ 5-6 degrees in respect to the normal of the bilayer, which could result in the constriction and closure of the selectivity filter. Our findings support the idea that the breakage of S4 under (hyper)polarization is a general feature of Kv channels with a non-swapped topology.

17.
Elife ; 92020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32343228

RESUMO

The CLC family comprises H+-coupled exchangers and Cl- channels, and mutations causing their dysfunction lead to genetic disorders. The CLC exchangers, unlike canonical 'ping-pong' antiporters, simultaneously bind and translocate substrates through partially congruent pathways. How ions of opposite charge bypass each other while moving through a shared pathway remains unknown. Here, we use MD simulations, biochemical and electrophysiological measurements to identify two conserved phenylalanine residues that form an aromatic pathway whose dynamic rearrangements enable H+ movement outside the Cl- pore. These residues are important for H+ transport and voltage-dependent gating in the CLC exchangers. The aromatic pathway residues are evolutionarily conserved in CLC channels where their electrostatic properties and conformational flexibility determine gating. We propose that Cl- and H+ move through physically distinct and evolutionarily conserved routes through the CLC channels and transporters and suggest a unifying mechanism that describes the gating mechanism of both CLC subtypes.


Assuntos
Antiporters/fisiologia , Canais de Cloreto/fisiologia , Cloretos/metabolismo , Ativação do Canal Iônico/fisiologia , Transporte de Íons/fisiologia , Antiporters/química , Canais de Cloreto/química , Proteínas de Escherichia coli/fisiologia , Simulação de Dinâmica Molecular , Prótons
18.
Structure ; 13(4): 591-600, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15837197

RESUMO

The selectivity filter of potassium channels is the structural element directly responsible for the selective and rapid conduction of K+, whereas other parts of the protein are thought to function as a molecular gate that either permits or blocks the passage of ions. However, whether the selectivity filter itself also possesses the ability to play the role of a gate is an unresolved question. Using free energy molecular dynamics simulations, it is shown that the reorientation of two peptide linkages in the selectivity filter of the KcsA K+ channel can lead to a stable nonconducting conformational state. Two microscopic factors influence the transition toward such a conformational state: the occupancy of one specific cation binding site in the selectivity filter (S2), and the strength of intersubunit interactions involving the GYG signature sequence. These results suggest that such conformational transitions occurring in the selectivity filter might be related to different K+ channel gating events, including C-type (slow) inactivation.


Assuntos
Ativação do Canal Iônico , Canais de Potássio/fisiologia , Canais de Potássio/química , Conformação Proteica
19.
ACS Cent Sci ; 3(3): 250-258, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28386603

RESUMO

ATP-binding cassette (ABC) transporters use the energy of ATP binding and hydrolysis to move a large variety of compounds across biological membranes. P-glycoprotein, involved in multidrug resistance, is the most investigated eukaryotic family member. Although a large number of biochemical and structural approaches have provided important information, the conformational dynamics underlying the coupling between ATP binding/hydrolysis and allocrite transport remains elusive. To tackle this issue, we performed molecular dynamic simulations for different nucleotide occupancy states of Sav1866, a prokaryotic P-glycoprotein homologue. The simulations reveal an outward-closed conformation of the transmembrane domain that is stabilized by the binding of two ATP molecules. The hydrolysis of a single ATP leads the X-loop, a key motif of the ATP binding cassette, to interfere with the transmembrane domain and favor its outward-open conformation. Our findings provide a structural basis for the unidirectionality of transport in ABC exporters and suggest a ratio of one ATP hydrolyzed per transport cycle.

20.
Elife ; 62017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994652

RESUMO

Potassium channels are opened by ligands and/or membrane potential. In voltage-gated K+ channels and the prokaryotic KcsA channel, conduction is believed to result from opening of an intracellular constriction that prevents ion entry into the pore. On the other hand, numerous ligand-gated K+ channels lack such gate, suggesting that they may be activated by a change within the selectivity filter, a narrow region at the extracellular side of the pore. Using molecular dynamics simulations and electrophysiology measurements, we show that ligand-induced conformational changes in the KcsA channel removes steric restraints at the selectivity filter, thus resulting in structural fluctuations, reduced K+ affinity, and increased ion permeation. Such activation of the selectivity filter may be a universal gating mechanism within K+ channels. The occlusion of the pore at the level of the intracellular gate appears to be secondary.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA