Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Res ; 252(Pt 2): 118903, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609070

RESUMO

Heavy carbon industries produce solid side stream materials that contain inorganic chemicals like Ca, Na, or Mg, and other metals such as Fe or Al. These inorganic compounds usually react efficiently with CO2 to form stable carbonates. Therefore, using these side streams instead of virgin chemicals to capture CO2 is an appealing approach to reduce CO2 emissions. Herein, we performed an experimental study of the mineral carbonation potential of three industrial steel slags via aqueous, direct carbonation. To this end, we studied the absorption capacities, reaction yields, and physicochemical characteristics of the carbonated samples. The absorption capacities and the reaction yields were analyzed through experiments carried out in a reactor specifically designed to work without external stirring. As for the physicochemical characterization, we used solid-state Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Using this reactor, the absorption capacities were between 5.8 and 35.3 g/L and reaction yields were in the range of 81-211 kg CO2/ton of slag. The physicochemical characterization of the solid products with solid FTIR, XRD and SEM indicated the presence of CaCO3. This suggests that there is potential to use the carbonated products in commercial applications.


Assuntos
Resíduos Industriais , Aço , Aço/química , Resíduos Industriais/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Difração de Raios X , Dióxido de Carbono/química
2.
J Chem Phys ; 161(8)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39171708

RESUMO

Magnetic resonance imaging (MRI) is the method of choice for noninvasive studies of micrometer-scale structures in biological tissues via their effects on the time- and frequency-dependent (restricted) and anisotropic self-diffusion of water. While new designs of time-dependent magnetic field gradient waveforms have enabled disambiguation between different aspects of translational motion that are convolved in traditional MRI methods relying on single pairs of field gradient pulses, data analysis for complex heterogeneous materials remains a challenge. Here, we propose and demonstrate nonparametric distributions of tensor-valued Lorentzian diffusion spectra, or "D(ω) distributions," as a general representation with sufficient flexibility to describe the MRI signal response from a wide range of model systems and biological tissues investigated with modulated gradient waveforms separating and correlating the effects of restricted and anisotropic diffusion.

3.
Solid State Nucl Magn Reson ; 134: 101972, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39357420

RESUMO

Solid-state NMR has great potential for investigating molecular structure, dynamics, and organization of the stratum corneum, the outer 10-20 µm of the skin, but is hampered by the unfeasibility of isotope labelling as generally required to reach sufficient signal-to-noise ratio for the more informative multidimensional NMR techniques. In this preliminary study of pig stratum corneum at 35 °C and water-free conditions, we demonstrate that cryogenic probe technology offers sufficient signal boost to observe previously undetectable minor resonances that can be uniquely assigned to fluid cholesterol, ceramides, and triacylglycerols, as well as enables 1H-1H spin diffusion monitored by 2D 1H-13C HETCOR to estimate 1-100 nm distances between specific atomic sites on proteins and lipids. The new capabilities open up for future multidimensional solid-state NMR studies to answer long-standing questions about partitioning of additives, such as pharmaceutically active substances, between solid and liquid domains within the protein and lipid phases in the stratum corneum and the lipids of the sebum.

4.
Biomacromolecules ; 24(7): 3094-3104, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288956

RESUMO

The high potential use of lignin in novel biomaterials and chemicals represents an important opportunity for the valorization of the most abundant natural resource of aromatic molecules. From an environmental perspective, it is highly desirable replacing the hazardous methods currently used to extract lignin from lignocellulosic biomass and develop more sustainable and environmentally friendly approaches. Therefore, in this work, levulinic acid (a "green" solvent obtained from biomass) was successfully used, for the first time, to selectively extract high-quality lignin from pine wood sawdust residues at 200 °C for 6 h (at atmospheric pressure). Moreover, the addition of catalytic concentrations of inorganic acids (i.e., H2SO4 or HCl) was found to substantially reduce the temperature and reaction times needed (i.e., 140 °C, 2 h) for complete lignin extraction without compromising its purity. NMR data suggests that condensed OH structures and acidic groups are present in the lignin following extraction. Levulinic acid can be easily recycled and efficiently reused several times without affecting its performance. Furthermore, excellent solvent reusability and performance of extraction of other wood residues has been successfully demonstrated, thus making the developed levulinic acid-based procedure highly appealing and promising to replace the traditional less sustainable methodologies.


Assuntos
Ácidos , Lignina , Lignina/química , Solventes/química , Ácidos Levulínicos , Biomassa
5.
Magn Reson Chem ; 60(7): 671-677, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35094442

RESUMO

Convenience food products tend to alter their quality and texture while stored. Texture-giving food components are often starch-rich ingredients, such as pasta or rice. Starch transforms depending on time, temperature and water content, which alters the properties of products. Monitoring these transformations, which are associated with a change in mobility of the starch chain segments, could optimize the quality of food products containing multiple ingredients. In order to do so, we applied a simple and efficient in situ 13 C solid-state magic angle spinning (MAS) NMR approach, based on two different polarization transfer schemes, cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT). The efficiency of the CP and INEPT transfer depends strongly on the mobility of chain segments-the time scale of reorientation of the CH-bond and the order parameter. Rigid crystalline or amorphous starch chains give rise to CP peaks, whereas mobile gelatinized starch chains appear as INEPT peaks. Comparing 13 C solid-state MAS NMR experiments based on CP and INEPT allows insight into the progress of gelatinization, and other starch transformations, by reporting on both rigid and mobile starch chains simultaneously with atomic resolution by the 13 C chemical shift. In conjunction with 1 H solid-state MAS NMR, complementary information about other food components present at low concentration, such as lipids and protein, can be obtained. We demonstrate our approach on starch-based products and commercial pasta as a function of temperature and storage.


Assuntos
Imageamento por Ressonância Magnética , Amido , Espectroscopia de Ressonância Magnética , Amido/química , Temperatura , Água
6.
Chemphyschem ; 21(11): 1166-1176, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32311226

RESUMO

To elucidate what properties control and practically limit ion transport in highly concentrated electrolytes (HCEs), the viscosity, ionic conductivity, ionicity, and transport numbers were studied for nine model electrolytes and connected to the rate capability in Li-ion battery (LIB) cells. The electrolytes employed the LiTFSI salt in three molar ratio concentrations; 1 : 2, 1 : 4, and 1 : 16 (LiTFSI:X) vs. solvents (X) with different permittivities; tert-butyl methyl ether (MTBE), tetrahydrofuran (THF) and propylene carbonate (PC). While the low polarity MTBE creates liquid electrolytes, ion-pairing limits the ionic conductivity despite extremely low viscosities. For the less concentrated 1 : 16 LiTFSI:MTBE and 1 : 16 LiTFSI:THF electrolytes the ionic diffusivities decrease with increased temperature, a sign of aggregation, but still their ionic conductivities and LIB performance increase. In general, the low ionic conductivity and high viscosity both limit the use of HCEs in LIBs, and no compensating mechanism seems to be present.

7.
Biomacromolecules ; 21(5): 1832-1840, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32068390

RESUMO

Native hemicellulose lacks many of the properties that make fossil fuel-based polymers excellent for use in today's industrial products and processes. The mechanical and thermal properties of the hemicellulose can, however, be modified, and its processability increased. We functionalized galactoglucomannan to lower its glass transition temperature (Tg) and thereby increase its processability. The functionalization was achieved through an etherification reaction with butyl glycidyl ether used at three molar ratios. Films were produced, and their mechanical and thermal properties were evaluated. Thermogravimetric analysis showed that increased substitution increased the degradation temperature and decreased the water content in the sample, implying increased hydrophobicity upon modification. Dynamic mechanical analysis indicated that butyl glycidyl ether functionalization alters the thermal properties of the modified films both in the absolute values of Tg and in the strength of the films. The etherification reaction resulted in a more ductile material than the unmodified galactoglucomannan (GGM).


Assuntos
Mananas , Picea , Interações Hidrofóbicas e Hidrofílicas , Resistência à Tração
8.
Biomacromolecules ; 21(5): 1952-1961, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32223221

RESUMO

This paper investigates a strategy to convert hydrophilic cellulose nanofibrils (CNF) into a hydrophobic highly cross-linked network made of cellulose nanofibrils and inorganic nanoparticles. First, the cellulose nanofibrils were chemically modified through an esterification reaction to produce a nanocellulose-based macroinitiator. Barium titanate (BaTiO3, BTO) nanoparticles were surface-modified by introducing a specific monomer on their outer-shell surface. Finally, we studied the ability of the nanocellulose-based macroinitiator to initiate a single electron transfer living radical polymerization of stearyl acrylate (SA) in the presence of the surface-modified nanoparticles. The BTO nanoparticles will transfer new properties to the nanocellulose network and act as a cross-linking agent between the nanocellulose fibrils, while the monomer (SA) directly influences the hydrophilic-lipophilic balance. The pristine CNF and the nanoparticle cross-linked CNF are characterized by FTIR, SEM, and solid-state 13C NMR. Rheological and dynamic mechanical analyses revealed a high dregee of cross-linking.


Assuntos
Nanofibras , Nanopartículas , Celulose , Interações Hidrofóbicas e Hidrofílicas , Polimerização
9.
Langmuir ; 35(40): 12971-12978, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31510744

RESUMO

Carbon dioxide must be removed from biogas or natural gas to obtain compressed or liquefied methane, and adsorption-driven isolation of CO2 could be improved by developing new adsorbents. Zeolite adsorbents can select CO2 over CH4, and the adsorption of CH4 on zeolite |Na12-xKx|-A is significantly lower for samples with a high K+ content, i.e., x > 2. Nevertheless, we show, using 1H NMR experiments, that these zeolites adsorb CH4 after long equilibration times. Pulsed-field gradient NMR experiments indicated that in large crystals of zeolites |Na12-xKx|-A, the long-time diffusion coefficients of CH4 did not vary with x, and the upper limit of the mean-square displacement was about 1.5 µm, irrespective of the diffusion time. Also for zeolite |Na12|-A samples of three different particle sizes (∼0.44, ∼2.9, and ∼10.6 µm), the upper limit of the mean-square displacement of CH4 was 1.5 µm and largely independent of the diffusion time. This similarity provided further evidence for an intracrystalline diffusion restriction for CH4 within the medium- and large-sized zeolite A crystals and possibly of clustering and close contact among the small zeolite A crystals. The upper limit of the long-time diffusion coefficient of adsorbed CH4 was (at 1 atm and 298 K) about 10-10 m2/s irrespective of the size of the zeolite particle or the studied content of K+ in zeolites |Na12-xKx|-A and |Na12|-A. The T1 relaxation time for adsorbed CH4 on zeolites |Na12-xKx|-A with x > 2 was smaller than for those with x < 2, indicating that the short-time diffusion of CH4 was hindered.

10.
Eur J Oral Sci ; 127(4): 340-346, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032998

RESUMO

Hypomineralized enamel may be found in connection with the condition molar incisor hypomineralization (MIH), which has a prevalence of around 15% in most parts of the world. Molar incisor hypomineralization is associated with extensive objective and subjective problems, such as hypersensitivity of the affected teeth, enamel breakdown, and problems with retention of restorations. The etiology behind MIH has not yet been elucidated, but a number of possible factors, which affect the same or different functions of ameloblasts during their different stages of maturation, have been suggested. The aim of this study was to utilize multi-nuclear, solid-state nuclear magnetic resonance (ss-NMR) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) to elucidate any differences, at a molecular level, between enamel powder prepared from normal, healthy teeth and enamel powder prepared from teeth diagnosed with MIH. 31 P and 23 Na ss-NMR confirmed the presence of HPO42- and two different Na+ sites in hypomineralized enamel, suggesting a heterogeneous chemical composition. The content of organic components was higher in hypomineralized enamel, as shown by both 13 C ss-NMR and ToF-SIMS, indicating the presence of higher numbers of proteins and phospholipids. The interplay between both is necessary for the formation and mineralization of enamel, which might be disturbed or halted in hypomineralized enamel.


Assuntos
Hipoplasia do Esmalte Dentário , Esmalte Dentário/química , Dente Molar , Ameloblastos , Esmalte Dentário/patologia , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Prevalência
11.
Langmuir ; 34(6): 2274-2281, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29400064

RESUMO

A colloidal dispersion of uniform organosilica nanoparticles could be produced via the disassembly of the non-surfactant-templated organosilica powder nanostructured folate material (NFM-1). This unusual reaction pathway was available because the folate and silica-containing moieties in NFM-1 are held together by noncovalent interactions. No precipitation was observed from the colloidal dispersion after a week, though particle growth occurred at a solvent-dependent rate that could be described by the Lifshitz-Slyozov-Wagner equation. An organosilica film that was prepared from the colloidal dispersion adsorbed folate-binding protein from solution but adsorbed ions from a phosphate-buffered saline solution to a larger degree. To our knowledge, this is the first instance of a colloidal dispersion of organosilica nanoparticles being derived from a macroscopic material rather than from molecular precursors.

12.
Q Rev Biophys ; 48(3): 323-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26314367

RESUMO

Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.


Assuntos
Fotodegradação , Fluorescência
13.
Caries Res ; 51(3): 255-263, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28501859

RESUMO

Dyes currently used to stain carious dentine have a limited capacity to discriminate normal dentine from carious dentine, which may result in overexcavation. Consequently, finding a selective dye is still a challenge. However, there is evidence that hydrazine-based dyes, via covalent bonds to functional groups, bind specifically to carious dentine. The aim of this study was to investigate the possible formation of covalent bonds between carious dentine and 15N2-hydrazine and the hydrazine-based dye, 15N2-labelled Lucifer Yellow, respectively. Powdered dentine from extracted carious and normal teeth was exposed to the dyes, and the staining reactions were analysed using time-of-flight secondary ion mass spectrometry (ToF-SIMS), solid-state 13C-labelled nuclear magnetic resonance (NMR) and 15N-NMR spectroscopy. The results showed that 15N2-hydrazine and 15N2-labelled Lucifer Yellow both bind to carious dentine but not to normal dentine. It can thus be concluded that hydrazine-based dyes can be used to stain carious dentine and leave normal dentine unstained.


Assuntos
Corantes/química , Cárie Dentária/patologia , Hidrazinas/química , Isoquinolinas/química , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massa de Íon Secundário/métodos , Humanos , Técnicas In Vitro
14.
Analyst ; 141(5): 1745-52, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26824089

RESUMO

Nuclear magnetic resonance (NMR) is currently one of the main analytical techniques applied in numerous branches of chemistry. Furthermore, NMR has been proven to be useful to follow in situ reactions occurring on a time scale of hours and days. For complicated mixtures, NMR experiments providing diffusion coefficients are particularly advantageous. However, the inverse Laplace transform (ILT) that is used to extract the distribution of diffusion coefficients from an NMR signal is known to be unstable and vulnerable to noise. Numerous regularisation techniques to circumvent this problem have been proposed. In our recent study, we proposed a method based on sparsity-enforcing l1-norm minimisation. This approach, which is referred to as ITAMeD, has been successful but limited to samples with a 'discrete' distribution of diffusion coefficients. In this paper, we propose a generalisation of ITAMeD using a tailored lp-norm (1 ≤ p ≤ 2) to process, in particular, signals arising from 'polydisperse' samples. The performance of our method was tested on simulations and experimental datasets of polyethylene oxides with varying polydispersity indices. Finally, we applied our new method to monitor diffusion coefficient and polydispersity changes of heparin undergoing enzymatic degradation in real time.

15.
Soft Matter ; 10(30): 5618-27, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24965195

RESUMO

We report on how the dynamical and structural properties of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C6C1ImTFSI) change upon different degrees of confinement in silica gels. The apparent diffusion coefficients of the individual ions are measured by (1)H and (19)F pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy, while the intermolecular interactions in the ionogels are elucidated by Raman spectroscopy. In addition, the local structure of the ionic liquid at the silica interface is probed by solid-state NMR spectroscopy. Importantly, we extend this study to a wider range of ionic liquid-to-silica molar ratios (x) than has been investigated previously, from very low (high degree of confinement) to very high (liquid-like gels) ionic liquid contents. Diffusion NMR measurements indicate that a solvation shell, with a significantly lower mobility than the bulk ionic liquid, forms at the silica interface. Additionally, the diffusion of the C6C1Im(+) and TFSI(-) ions decreases more rapidly below an observed molar ratio threshold (x < 1), with the intrinsic difference in the self-diffusion coefficient between the cation and anion becoming less pronounced. For ionic liquid molar ratio of x < 1, Raman spectroscopy reveals a different conformational equilibrium for the TFSI(-) anions compared to the bulk ionic liquid, with an increased population of the cisoid isomers with respect to the transoid. Concomitantly, at these high degrees of confinement the TFSI(-) anion experiences stronger ion-ion interactions as indicated by the evolution of the TFSI(-) characteristic vibrational mode at ∼740 cm(-1). Furthermore, solid-state 2D (29)Si{(1)H} HETCOR NMR measurements establish the interactions of the ionic liquid species with the silica surface, where the presence of adsorbed water results in weaker interactions between (29)Si surface moieties and the hydrophobic alkyl protons of the cationic C6C1Im(+) molecules.

16.
Soft Matter ; 10(41): 8276-87, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25189146

RESUMO

Probe diffusion was determined in phase separated bicontinuous gels prepared by acid-induced gelation of the whey protein isolate-gellan gum system. The topological characterization of the phase-separated gel systems is achieved by confocal microscopy and the diffusion measurements are performed using pulsed field gradient (PFG) NMR and fluorescence recovery after photo-bleaching (FRAP). These two techniques gave complementary information about the mass transport at different time- and length scales, PFG NMR provided global diffusion rates in the gel systems, while FRAP enabled the measurements of diffusion in different phases of the phase-separated gels. The results revealed that the phase-separated gel with the largest characteristic wavelength had the fastest diffusion coefficient, while the gel with smaller microstructures had a slower probe diffusion rate. By using the diffusion data obtained by FRAP and the structural data from confocal microscopy, modelling through the lattice-Boltzmann framework was carried out to simulate the global diffusion and verify the validity of the experimental measurements. With this approach it was found that discrepancies between the two experimental techniques can be rationalized in terms of probe distribution between the different phases of the system. The combination of different techniques allowed the determination of diffusion in a phase-separated biopolymer gel and gave a clearer picture of this complex system. We also illustrate the difficulties that can arise if precautions are not taken to understand the system-probe interactions.


Assuntos
Géis/química , Polissacarídeos Bacterianos/química , Difusão , Recuperação de Fluorescência Após Fotodegradação , Espectroscopia de Ressonância Magnética
17.
Int J Biol Macromol ; 280(Pt 4): 135936, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39322130

RESUMO

Lignin is a complex biopolymer whose efficient extraction from biomass is crucial for various applications. Deep eutectic solvents (DES), particularly natural-origin DES (NADES), have emerged as promising systems for lignin fractionation and separation from other biomass components. While ternary DES offer enhanced fractionation performance, the role of each component in these mixtures remains unclear. In this study, the effects of adding tartaric acid (Tart) or citric acid (Cit) to a common binary DES mixture composed of lactic acid (Lact) and choline chloride (ChCl) were investigated for lignin extraction from acacia wood. Ternary Cit-based DES showed superior performance compared to Tart-based DES. Using a combined mixture-process D-Optimal experimental design, the Lact:Cit:ChCl DES composition and extraction temperature were optimized targeting maximum lignin yield and purity. The optimal conditions (i.e., Lact:Cit:ChCl, 0.6:0.3:0.1 molar ratio, 140 °C) resulted in a lignin extraction yield of 99.63 ± 1.24 % and a lignin purity of 91.45 ± 1.03 %. Furthermore, this DES exhibited feasible recyclability and reusability without sacrificing efficiency.

18.
Anal Chem ; 85(3): 1828-33, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23297715

RESUMO

Pulsed gradient spin echo (PGSE) is a well-known NMR technique for determining diffusion coefficients. Various signal processing techniques have been introduced to solve the task, which is especially challenging when the decay is multiexponential with an unknown number of components. Here, we introduce a new method for the processing of such types of signals. Our approach modifies the Tikhonov's regularization, known previously in CONTIN and Maximum Entropy (MaxEnt) methods, by using the l(1)-norm penalty function. The modification enforces sparsity of the result, which improves resolution, compared to both mentioned methods. We implemented the Iterative Thresholding Algorithm for Multiexponential Decay (ITAMeD), which employs the l(1)-norm minimization, using the Fast Iterative Shrinkage Thresholding Algorithm (FISTA). The proposed method is compared with the Levenberg-Marquardt-Fletcher fitting, Non-negative Least Squares (NNLS), CONTIN, and MaxEnt methods on simulated datasets, with regard to noise vulnerability and resolution. Also, the comparison with MaxEnt is presented for the experimental data of polyethylene glycol (PEG) polymer solutions and mixtures of these with various molecular weights (1080 g/mol, 11,840 g/mol, 124,700 g/mol). The results suggest that ITAMeD may be the method of choice for monodispersed samples with "discrete" distributions of diffusion coefficients.

19.
Appl Microbiol Biotechnol ; 97(10): 4403-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22885694

RESUMO

Alginate is a biopolymer used in drug formulations and for surgical purposes. In the presence of divalent cations, it forms solid gels, and such gels are of interest for immobilization of cells and enzymes. In this work, we entrapped trypsin in an alginate gel together with a known substrate, N α-benzoyl-L-arginine-4-nitroanilide hydrochloride (L-BAPNA), and in the presence or absence of D-BAPNA, which is known to be a competitive inhibitor. Interactions between alginate and the substrate as well as the enzyme were characterized with transmission electron microscopy, rheology, and nuclear magnetic resonance spectroscopy. The biocatalysis was monitored by spectrophotometry at temperatures ranging from 10 to 42 °C. It was found that at 37 and 42 °C a strong acceleration of the reaction was obtained, whereas at 10 °C and at room temperature, the presence of D-BAPNA leads to a retardation of the reaction rate. The same effect was found when the reaction was performed in a non-cross-linked alginate solution. In alginate-free buffer solution, as well as in a solution of carboxymethylcellulose, a biopolymer that resembles alginate, the normal behavior was obtained; however, with D-BAPNA acting as an inhibitor at all temperatures. A more detailed investigation of the reaction kinetics showed that at higher temperature and in the presence of alginate, the curve of initial reaction rate versus L-BAPNA concentration had a sigmoidal shape, indicating an allosteric behavior. We believe that the anomalous behavior of trypsin in the presence of alginate is due to conformational changes caused by interactions between the positively charged trypsin and the strongly negatively charged alginate.


Assuntos
Alginatos/química , Enzimas Imobilizadas/química , Tripsina/química , Biocatálise , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA