Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608289

RESUMO

The isolation of bacteria that represent the diversity of autochthonous taxa in the gastrointestinal tract is necessary to fully ascertain their function, but the majority of bacterial species inhabiting the intestines of mammals are fastidious and thus challenging to isolate. The goal of the current study was to isolate a diverse assemblage of anaerobic bacteria from the intestine of pigs as a model animal and to comparatively examine various novel and traditional isolation strategies. Methods used included long-term enrichments, direct plating, a modified ichip method, as well as ethanol and tyndallization treatments of samples to select for endospore-forming taxa. A total of 234 taxa (91 previously uncultured) comprising 80 genera and 7 phyla were isolated from mucosal and luminal samples from the ileum, cecum, ascending colon, and spiral colon removed from animals under anesthesia. The diversity of bacteria isolated from the large intestine was less than that detected by next-generation sequence analysis. Long-term enrichments yielded the greatest diversity of recovered bacteria (Shannon's index [SI] = 4.7). Methods designed to isolate endospore-forming bacteria produced the lowest diversity (SI ≤ 2.7), with tyndallization yielding lower diversity than the ethanol method. However, the isolation frequency of previously uncultured bacteria was highest for ethanol-treated samples (41.9%) and the ichip method (32.5%). The goal of recovering a diverse collection of enteric bacteria was achieved. Importantly, the study findings demonstrate that it is necessary to use a combination of methods in concert to isolate bacteria that are representative of the diversity within the intestines of mammals.IMPORTANCE This work determined that using a combination of anaerobic isolation methods is necessary to increase the diversity of bacteria recovered from the intestines of monogastric mammals. Direct plating methods have traditionally been used to isolate enteric bacteria, and recent methods (e.g., diffusion methods [i.e., ichip] or differential isolation of endospore-forming bacteria) have been suggested to be superior at increasing diversity, including the recovery of previously uncultured taxa. We showed that long-term enrichment of samples using a variety of media isolated the most diverse and novel bacteria. Application of the ichip method delivered a diversity of bacteria similar to those of enrichment and direct plating methods. Methods that selected for endospore-forming bacteria generated collections that differed in composition from those of other methods with reduced diversity. However, the ethanol treatment frequently isolated novel bacteria. By using a combination of methods in concert, a diverse collection of enteric bacteria was generated for ancillary experimentation.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Animais , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Técnicas Bacteriológicas , Bactérias Formadoras de Endosporo/classificação , Bactérias Formadoras de Endosporo/genética , Bactérias Formadoras de Endosporo/isolamento & purificação , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Suínos
2.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859592

RESUMO

Salmonella enterica serovar Typhimurium is a prevalent incitant of enteritis in human beings and nonhuman animals. It has been proposed that host defense responses incited by Salmonella allow the bacterium to overcome colonization resistance. Piglets (n = 24) were orally inoculated with S. enterica serovar Typhimurium DT104 or buffer alone, and the host and microbial responses were temporally examined at the acute (2 days postinoculation [dpi]), subacute (6 dpi), and recovery (10 dpi) stages of salmonellosis. At the acute stage of disease, body temperatures were elevated, and feed consumption and weight gain were reduced. The densities of Salmonella associated with the gut mucosa decreased over time, with higher densities of the bacterium in the ileum and the large intestine. Moreover, substantive histopathological changes were observed as a function of time, with prominent epithelial injury and neutrophil infiltration observed at 2 dpi. Correspondingly, a variety of host metrics were temporally affected in piglets with salmonellosis (e.g., TNFα, IFNγ, PR39, ßD2, iNOS, IL8, REGIIIγ). The enteric microbiota was characterized using culture-independent and -dependent methods in concert, and taxon- and location-specific changes to the microbiota were observed in infected piglets. Bacteroides spp. (e.g., Bacteroides uniformis, Bacteroides fragilis), Streptococcus spp. (e.g., Streptococcus gallolyticus), and various Gammaproteobacteria were highly associated with inflamed tissues, while bacteria within the Ruminococcaceae and Veillonellaceae families were mainly associated with healthy mucosae. In conclusion, the study findings showed that S Typhimurium incited temporal and spatial modifications to the swine autochthonous microbiota, and to host defense responses, that were consistent with overcoming colonization resistance to incite salmonellosis in swine.IMPORTANCE Limited information is available on host and enteric microbiota responses incited by Salmonella enterica serovar Typhimurium in swine and on possible mechanisms by which the bacterium overcomes colonization resistance to incite salmonellosis. Temporal characterization of a variety of host metrics in piglets (e.g., physiological, histopathological, and immunological) showed the importance of studying the progression of salmonellosis. A number of host responses integrally associated with disease development were identified. Utilization of next-generation sequence analysis to characterize the enteric microbiota was found to lack sufficient resolution; however, culture-dependent and -independent methods in combination identified taxon- and location-specific changes to bacterial communities in infected piglets. The study identified bacterial and host responses associated with salmonellosis, which will be beneficial in understanding colonization resistance and in the development of effective alternatives to antibiotics to mitigate salmonellosis.


Assuntos
Ceco/microbiologia , Colo/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/imunologia , Íleo/microbiologia , Salmonella typhimurium/fisiologia , Animais , Ceco/imunologia , Colo/imunologia , Íleo/imunologia , Masculino , Distribuição Aleatória , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Fatores de Tempo
3.
Animals (Basel) ; 13(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36978538

RESUMO

Non-antibiotic alternatives to antimicrobial growth promoters (AGPs) are required, and understanding the mode of action of AGPs may facilitate the development of effective alternatives. The temporal impact of the conventional antibiotic AGP, virginiamycin, and an AGP alternative, ceragenin (CSA-44), on the structure and function of the broiler chicken cecal microbiota was determined using next-generation sequencing and 1H-nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. To elucidate the impact of enteric bacterial diversity, oral transplantation (±) of cecal digesta into 1-day-old chicks was conducted. Microbiota transplantation resulted in the establishment of a highly diverse cecal microbiota in recipient chicks that did not change between day 10 and day 15 post-hatch. Neither virginiamycin nor CSA-44 influenced feed consumption, weight gain, or feed conversion ratio, and did not affect the structure of the cecal microbiota in chicks possessing a low or high diversity enteric microbiota. However, metabolomic analysis of the cecal contents showed that the metabolome of cecal digesta was affected in birds administered virginiamycin and CSA-44 as a function of bacterial community diversity. As revealed by metabolomics, glycolysis-related metabolites and amino acid synthesis pathways were impacted by virginiamycin and CSA-44. Thus, the administration of AGPs did not influence bacterial community structure but did alter the function of enteric bacterial communities. Hence, alterations to the functioning of the enteric microbiota in chickens may be the mechanism by which AGPs impart beneficial health benefits, and this possibility should be examined in future research.

4.
Pathogens ; 11(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365008

RESUMO

Salmonella enterica serovar Typhimurium incites salmonellosis in many different species including chickens and human beings. Acute salmonellosis was studied in neonatal broiler chicks by orally inoculating 2-day-old chicks with S. Typhimurium DT104. The temporal impact of disease (1, 2, and 4 days post-inoculation) on the structure and function of the enteric microbiota, on the bird's immune response in the ileum, cecum, and colon, and on the metabolome of digesta, breast muscle, liver, serum, and hippocampus were examined. Substantive histopathologic changes were observed in the small and large intestine, including the colon of chicks inoculated with S. Typhimurium, and increased in magnitude over the experimental time period. A variety of inflammatory genes (IFNγ, IL8, IL10, INOS, MIP1ß, TGFß2, TLR4, and TLR15) were temporally regulated. In addition, the metabolome of ileal digesta, breast muscle, liver, serum, and hippocampus was temporally altered in infected chicks. Although the structure of bacterial communities in digesta was not affected by S. Typhimurium infection, metabolomic analysis indicated that the function of the microbiota was changed. Collectively, the study findings demonstrate that infection of neonatal chicks by S. Typhimurium imparts a temporal and systemic impact on the host, affecting the immune system, the metabolome, and the function of the enteric microbiota.

5.
Gut Pathog ; 12(1): 53, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33292444

RESUMO

BACKGROUND: Cathelicidins are a class of antimicrobial peptide, and the murine cathelicidin-related antimicrobial peptide (mCRAMP) has been demonstrated in vitro to impair Salmonella enterica serovar Typhimurium proliferation. However, the impact of mCRAMP on host responses and the microbiota following S. Typhimurium infection has not been determined. In this study mCRAMP-/- and mCRAMP+/+ mice (± streptomycin) were orally inoculated with S. enterica serovar Typhimurium DT104 (SA +), and impacts on the host and enteric bacterial communities were temporally evaluated. RESULTS: Higher densities of the pathogen were observed in cecal digesta and associated with mucosa in SA+/mCRAMP-/- mice that were pretreated (ST+) and not pretreated (ST-) with streptomycin at 24 h post-inoculation (hpi). Both SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were more susceptible to infection exhibiting greater histopathologic changes (e.g. epithelial injury, leukocyte infiltration, goblet cell loss) at 48 hpi. Correspondingly, immune responses in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were affected (e.g. Ifnγ, Kc, Inos, Il1ß, RegIIIγ). Systemic dissemination of the pathogen was characterized by metabolomics, and the liver metabolome was affected to a greater degree in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice (e.g. taurine, cadaverine). Treatment-specific changes to the structure of the enteric microbiota were associated with infection and mCRAMP deficiency, with a higher abundance of Enterobacteriaceae and Veillonellaceae observed in infected null mice. The microbiota of mice that were administered the antibiotic and infected with Salmonella was dominated by Proteobacteria. CONCLUSION: The study findings showed that the absence of mCRAMP modulated both host responses and the enteric microbiota enhancing local and systemic infection by Salmonella Typhimurium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA