Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; 19(12): e2206169, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587988

RESUMO

Organic materials are promising candidates for the development of efficient sensors for many medicinal and materials science applications. Single crystals of a small molecule, 4-trifluoromethyl phenyl isothiocyanate (4CFNCS), exhibit plastic deformation when bent, twisted, or coiled. Synchrotron micro-focus X-ray diffraction mapping of the bent region of the crystal confirms the mechanism of deformation. The crystals are incorporated into a flexible piezoresistive sensor using a composite constituting PEDOT: PSS/4CFNCS, which shows an impressive performance at high-pressure ranges (sensitivity 0.08 kPa-1 above 44 kPa).

2.
Nanotechnology ; 30(14): 145502, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30641495

RESUMO

A back-gate-field-effect-transistor (BG-FET) has been developed to selectively detect ammonia and urea. The BG-FET was prepared on a p-type Si substrate with an n-type channel of CdS-TiO2 nanocomposite and poly-methyl methacrylate film as dielectric layer. The reusability of the sensor was ensured by putting it as a cover to a chamber where samples were detected. The BG-FET showed an increase in drain current with the increase in ammonia release from chamber because higher numbers of charge carriers were created when ammonia adsorped on CdS-TiO2 nanostructures. Control experiments suggested that the variation in current-to-voltage response of BG-FET could also be calibrated to measure the activity of a host of other hazardous gases. The lowest concentration of ammonia detected was ∼0.85 ppm with a response time of 30 s at a gate voltage of 0.5 V or less, which were superior than available field effect transistors ammonia sensors. Addition of urease in urine liberated ammonia equivalent to urea content in urine, which could be detected by the proposed BGFET. The urea-urease enzyme catalysis reaction made the sensor specific in detecting the biomarker. The accuracy, sensitivity, and reusability of the device was found to be suitable to develop a point-of-care testing device for ammonia and urea detection.


Assuntos
Amônia/urina , Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Ureia/urina , Compostos de Cádmio/química , Catálise , Desenho de Equipamento , Reutilização de Equipamento , Humanos , Nanoestruturas/química , Sistemas Automatizados de Assistência Junto ao Leito , Sulfatos/química , Titânio/química , Transistores Eletrônicos
3.
Soft Matter ; 14(16): 3182-3191, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29645047

RESUMO

We demonstrate the feasibility of a self-propelling mushroom motor, namely a 'logibot', as a functional unit for the construction of a host of optimized binary logic gates. Emulating the chemokinesis of unicellular prokaryotes or eukaryotes, the logibots made stimuli responsive conditional movements at varied speeds towards a pair of acid-alkali triggers. A series of integrative logic operations and cascaded logic circuits, namely, AND, NAND, NOT, OR, NOR, and NIMPLY, have been constructed employing the decisive chemotactic migrations of the logibot in the presence of the pH gradient established by the sole or coupled effects of acid (HCl-catalase) and alkali (NaOH) drips inside a peroxide bath. The imposed acid and/or alkali triggers across the logibots were realized as inputs while the logic gates were functionally reconfigured to several operational modes by varying the pH of the acid-alkali inputs. The self-propelling logibot could rapidly sense the external stimuli, decide, and act on the basis of intensities of the pH triggers. The impulsive responses of the logibots towards and away from the external acid-alkali stimuli were interpreted as the potential outputs of the logic gates. The external stimuli responsive self-propulsion of the logibots following different logic gates and circuits can not only be an eco-friendly alternative to the silicon-based computing operations but also be a promising strategy for the development of intelligent pH-responsive drug delivery devices.


Assuntos
Biomimética/métodos , Quimiotaxia , Lógica , Microbiologia , Agaricus/metabolismo
4.
Chem Commun (Camb) ; 60(33): 4382-4394, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38577734

RESUMO

Polymers are one of the most popular materials for next-generation flexible sensing device fabrication due to their tunable mechanical and electrical properties. A series of prior research studies in the field of smart flexible and wearable sensing illustrates the potential of various polymer and composite materials to be applied in sensor development. In this direction, mechanical compliance plays a vital role as it ensures the stability and reliability of the fabricated sensor. Therefore, engineering mechanical compliance for the development of smart flexible solutions has emerged as a significant area of research. Furthermore, the usage of flexible sensing devices is rapidly increasing in the field of healthcare devices and robotic automation. This feature article summarizes the relevant contributions of the authors in the field of engineered polymers and composites for flexible sensor development with a focus on healthcare and physical sensing applications. We discuss the polymer and composite materials, their characteristics, fabrication technologies, finite element method analysis, and examples of flexible physical sensors, i.e. pressure, strain, and temperature sensors, for various wearable healthcare applications and robotic automation. Finally, we discuss examples of multi-sensory systems having flexible sensors.

5.
Biosens Bioelectron ; 165: 112333, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729478

RESUMO

Concentration of α-amylase in human serum is a key indicator of various pancreatic ailments and an affordable point-of-care detection of this biomarker can benefit millions suffering from these diseases. In view of this situation, we report the development of a flexible patch-sensor, which simply requires a microdroplet of aqueous starch-FeSO4 solution to detect α-amylase in serum. The detection is achieved through the generation of mixing vortices (~12 rpm) inside the droplet with the help of an imposed thermal gradient. Such vortices due to Marangoni and natural convections are found to be strongest at an optimal temperature difference of ~18 °C - 23 °C across the droplet which in turn facilitate mixing and promote the specific starch-amylase enzymatic reaction. Subsequently, the large (~80%) variation in the electrical resistance across the droplet is correlated to detect the level of the α-amylase in the analyte. Importantly, the sensor can detect even in the limits of 15-110 units/liter. Further, the sensitivity of flexible sensors is ~8.6% higher than the non-flexible one. Interestingly, the sensitivity of the proposed sensor has been nearly three-times than the previously reported optical ones. The results of patch-sensor match very closely with the standard path-lab tests while detecting unknown level of amylase in serum. The prototype has shown significant potential to translate into an affordable device for the real-time detection and easy prognosis of pancreatic disorders.


Assuntos
Técnicas Biossensoriais , alfa-Amilases , Amilases , Humanos , Soro , Amido
6.
Nanoscale Adv ; 1(3): 1155-1164, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133198

RESUMO

A droplet energy harvester (DEH) composed of aqueous salt solution could generate electrical energy from light when placed on a metal-semiconductor Schottky-junction emulating the principles of electrochemical photovoltaics (ECPV). The maximum potential difference generated was ∼95 mV under sun, which was enhanced by ∼1.5 times after the addition of gold nanoparticles (AuNPs) in the droplet because of the generation of additional charge carriers from the localized surface plasmon resonance (LSPR). Focusing the solar illumination through a bi-convex lens on five such droplets increased the voltage to ∼320 mV with a power density of ∼0.25 mW cm-2. When the DEH was converted to a microfluidic energy harvester (MEH) by flowing the AuNP laden salt solution through a microchannel integrated with an array of Schottky-junction electrodes, at an optimal flow rate, another two-fold increase in the power density was observed. In the MEH, because the ECPV aided by the LSPR converted the solar energy into electrical energy, the streaming potential (SP) generated across the electrodes because of the fluid flow converted the mechanical energy into electrical energy. Increase in the number of electrode pairs improved the voltage generation, which suggested that the MEH had potential for microscale-very-large-scale-integration (µ-VLSI). The combined effects of ECPV, LSPR, and SP in the MEH could show an efficiency ∼2.5%, which was one of the highest ones reported, for Schottky-junction energy harvesters. This study shows some simple and efficient pathways to harvest high-density electrical power using microchannels and droplets from the naturally abundant solar or hydroelectric (hydel) energy resources.

7.
Biosens Bioelectron ; 124-125: 75-81, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343159

RESUMO

Activity of α-amylase enzyme in human serum indicates the onset of pancreatitis, mumps, cancer, stress, and depression. Herein we design and develop a biosensor for the point-of-care-testing (POCT) of α-amylase concentration in serum. The biosensor is composed of a glass substrate coated with an electrically conducting poly-aniline-emeraldine-salt (PANI-ES) film covered with starch-coated gold nanoparticles (SAuNPs). Addition of different dosage of α-amylase on the biosensor selectively depletes starch stabilized on the SAuNPs, which changes the electrical resistance of the sensor. The change in electrical resistance show a nearly linear correlation with the concentration of α-amylase in buffer, which helps the detection of unknown α-amylase activity in the blood serum. The biosensor responds in a specific manner owing to the use of selective enzymatic chemical reaction between α-amylase and starch. The pathways to SAuNP formation on PANI-ES, time-dependent starch digestion with α-amylase, and the subsequent variation in electrical response was characterized to uncover the sensing mechanism. The chloride ions and the AuNPs present catalyse the starch-amylase reaction on the PANI surface to enable a sensitive detection of α-amylase in serum (25 - 100 U/l) at a quick response time of ~60 s. Integration of the biosensor with the built-in sourcemeter and a real time display help an immediate presentation of α-amylase level in the serum, comparable to the clinically approved methodologies.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/química , alfa-Amilases/isolamento & purificação , Ouro , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Amido/química , alfa-Amilases/sangue
8.
Nanoscale ; 11(4): 1680-1691, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30620017

RESUMO

A liquid crystal (LC) droplet resting on a poly-dimethylsiloxane substrate could rapidly spread upon solvent vapour annealing to form a non-uniform film. While the solvophobic surfaces restricted the spreading of the droplet to form a thicker film upon solvent annealing, the solvophilic substrates allowed the formation of a thinner film under similar conditions. Withdrawal of the solvent exposure caused rapid evaporation of the solvent molecules from the film, especially near the retracting contact-line to form microscale LC-droplets, which shrunk into nanoscopic ones after evaporation of the excess solvent. The thinner films on solvophilic surfaces allowed the formation of droplets with smaller size and periodicity as small as ∼100 nm and ∼200 nm, respectively. Furthermore, the use of a patterned substrate could impose a large-area ordering on the nanodroplets. A theoretical model for an evaporating film of LC-solution revealed that the spacing of nanodroplets could be decided by the interplay of stabilizing and destabilizing components of capillary force while van der Waals interaction played a supportive role when the film was ultrathin near the contact line. The micro/nanodroplets thus formed showed an anomalous oscillatory rotational motion originating from the difference in the Laplace pressure near contact lines under the influence of an external electric field. The application of the Lorenz force to these droplets showed translation and rotational motions followed by ejection of satellite droplets.

9.
ACS Appl Bio Mater ; 2(10): 4571-4582, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021416

RESUMO

We report the fabrication of ascorbic acid (AA) template nanomotors using buds of Camelia sinensis, undergoing fuel-free propulsion. The motors, namely, Teabots, display propulsion by converting the sound energy from the acoustic field into a mechanical one. The mesh-like structures of the anionic Teabots facilitate superior adsorption of ascorbic acid (AA-Teabots) undergoing a controlled release. The motors show antioxidant properties at the physiological pH range by scavenging intracellular reactive oxygen species. Interestingly, the percentage release of ascorbic acid is significantly higher under the influence of ultrasound exposure, as compared to the normal pH-dependent release. The motors were also efficient in the degradation of artificially synthesized toxic amyloid fibrils. The acoustic delivery of AA-Teabots could protect HEK-293 cells from oxidative injuries alongside preventing protein-aggregation derived diseases. Soon, such acoustic powered biocompatible AA-Teabots are envisioned to provide an attractive approach in proficient delivery and controlled release of therapeutic payloads at targeted zones.

10.
Biosens Bioelectron ; 94: 544-551, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28351016

RESUMO

The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests.


Assuntos
Técnicas Biossensoriais/métodos , Umidade , Pulmão/química , Monitorização Fisiológica/métodos , Expiração , Humanos , Pulmão/fisiopatologia , Sistemas Automatizados de Assistência Junto ao Leito , Processamento de Sinais Assistido por Computador , Temperatura , Água/química
11.
ACS Appl Mater Interfaces ; 9(1): 1066-1076, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28026170

RESUMO

Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.

12.
Nanoscale ; 8(11): 6118-28, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26931770

RESUMO

Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol, diethyl ether, toluene, and chloroform stimulated motions of different magnitudes could easily be correlated to the surface tension gradient on the drop surface. Interestingly, when the nanoparticle laden droplet of aqueous salt solution was connected to an external electric circuit through a pair of electrodes, an ∼85-95% reduction in the electrical resistance was observed across the spinning droplet. The extent of reduction in the resistance was found to have a correlation with the difference in the surface tension of the vapour source and the water droplet, which could be employed to distinguish the vapour sources. Remarkably, the power density of the same prototype was estimated to be around 7 µW cm(-2), which indicated the potential of the phenomenon in converting surface energy into electrical in a non-destructive manner and under ambient conditions. Theoretical analysis uncovered that the difference in the ζ-potential near the electrodes was the major reason for the voltage generation. The prototype could also detect the repeated exposure and withdrawal of vapour sources, which helped in the development of a proof-of-concept detector to sense alcohol issuing out of the human breathing system.


Assuntos
Testes Respiratórios/métodos , Nanopartículas Metálicas/química , Adsorção , Consumo de Bebidas Alcoólicas , Clorofórmio/química , Eletrodos , Etanol/química , Éter/química , Ouro/química , Humanos , Metanol/química , Modelos Estatísticos , Movimento (Física) , Nanopartículas/química , Nanotecnologia/métodos , Prata/química , Propriedades de Superfície , Tensão Superficial , Tensoativos , Tolueno/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA