Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 218, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098460

RESUMO

BACKGROUND: Bacillomycin D-C16 can induce resistance in cherry tomato against pathogens; however, the underlying molecular mechanism is poorly understood. Here, the effect of Bacillomycin D-C16 on induction of disease resistance in cherry tomato was investigated using a transcriptomic analysis. RESULTS: Transcriptomic analysis revealed a series of obvious enrichment pathways. Bacillomycin D-C16 induced phenylpropanoid biosynthesis pathways and activated the synthesis of defense-related metabolites including phenolic acids and lignin. Moreover, Bacillomycin D-C16 triggered a defense response through both hormone signal transduction and plant-pathogen interactions pathways, and increased the transcription of several transcription factors (e.g., AP2/ERF, WRKY and MYB). These transcription factors might contribute to the further activated the expression of defense-related genes (PR1, PR10 and CHI) and stimulated the accumulation of H2O2. CONCLUSION: Bacillomycin D-C16 can induce resistance in cherry tomato by activating the phenylpropanoid biosynthesis pathway, hormone signal transduction pathway and plant-pathogen interactions pathway, thus activating comprehensive defense reaction against pathogen invasion. These results provided a new insight into the bio-preservation of cherry tomato by the Bacillomycin D-C16.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Transcriptoma , Resistência à Doença/genética , Peróxido de Hidrogênio , Hormônios , Fatores de Transcrição/genética , Doenças das Plantas/genética
2.
Microb Pathog ; 180: 106144, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148923

RESUMO

Biofilms provide a suitable environment for L. monocytogenes and are the cause of enormous risks in the food industry. SpoVG is a global regulatory factor that plays a vital role in physiological activity of L. monocytogenes. We constructed spoVG mutant strains to investigate the effects of these mutants on L. monocytogenes biofilms. The results show that L. monocytogenes biofilm formation was decreased by 40%. Furthermore, we measured biofilm related phenotypes to study the regulation of SpoVG. The motility capacity of L. monocytogenes was found to decrease after the deletion of spoVG. The cell surface properties changed in the spoVG mutant strains, with an increase in both the cell surface hydrophobicity and the auto-aggregation capacity after spoVG deletion. SpoVG mutant strains were found to be more sensitive to antibiotics, and had a reduced tolerance to inappropriate pH, salt stress and low temperature. The RT-qPCR results showed that SpoVG effectively regulated the expression of genes related to quorum sensing, flagella, virulence and stress factors. These findings suggest that spoVG has potential as a target to decrease biofilm formation and control L. monocytogenes contamination in the food industry.


Assuntos
Listeria monocytogenes , Temperatura , Proteínas de Bactérias/metabolismo , Biofilmes , Virulência/genética
3.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36651814

RESUMO

AIMS: PgpH gene has an important regulatory role on bacterial physiological activity, but studies on its regulation mechanism on biofilm formation of Listeria monocytogenes are lacking. Our aim was to investigate the effect of pgpH gene deletion on biofilm formation in L. monocytogenes. METHODS AND RESULTS: The ΔpgpH deletion strain of L. monocytogenes LMB 33 426 was constructed by homologous recombination. Deletion of the pgpH gene resulted in a significant reduction in biofilm formation. The swimming ability of the ΔpgpH strain on semisolid plates was unchanged compared to the wild-type strain (WT), and the auto-aggregation capacity of L. monocytogenes was decreased. RNA-seq showed that ΔpgpH resulted in the differential expression of 2357 genes compared to WT. pgpH inactivation resulted in the significant downregulation of the cell wall formation-related genes dltC, dltD, walK, and walR and the flagellar assembly related genes fliG and motB. CONCLUSIONS: This study shows that the deletion of pgpH gene regulates biofilm formation and auto-aggregation ability of L. monocytogenes by affecting the expression of flagellar assembly and cell wall related genes. pgpH has a global regulatory effect on biofilm formation in L. monocytogenes.


Assuntos
Biofilmes , Listeria monocytogenes , Listeria monocytogenes/fisiologia , Deleção de Genes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Biotechnol Lett ; 45(8): 981-991, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266877

RESUMO

OBJECTIVES: The importance of thioesterase domains on bacillomycin D synthesis and the ability of different thioesterase domains to selectively recognize and catalyze peptide chain hydrolysis and cyclization were studied by deleting and substituting thioesterase domains. RESULTS: No bacillomycin D analogs were found in the thioesterase-deleted strain fmbJ-ΔTE, indicating that the TE domain was essential for bacillomycin D synthesis. Then the thioesterase in bacillomycin D synthetases was replaced by the thioesterase in bacillomycin F, iturin A, mycosubtilin, plipastatin and surfactin synthetases. Except for fmbJ-S-TE, all others were able to synthesize bacillomycin D homologs because a suitable recombination site was selected, which maintained the integrity of NRPSs. In particular, the yield of bacillomycin D in fmbJ-IA-TE, fmbJ-M-TE and fmbJ-P-TE was significantly increased. CONCLUSION: This study expands our understanding of the TE domain in bacillomycin D synthetases and shows that thioesterase has excellent potential in the chemical-enzymatic synthesis of natural products or their analogs.

5.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863833

RESUMO

Escherichia coli O157:H7 is a common pathogenic bacterium in food and water that can pose a threat to human health. The aim of this study was to develop loop-mediated isothermal amplification (LAMP) method for the detection of E. coli O157:H7 in food based on the specific gene Ecs_2840 and to construct rapid detection kits based on the established methods. Specifically, we established two methods of real-time fluorescent LAMP (RT-LAMP) and visual LAMP with calcein as an indicator. In pure bacterial culture, the cell sensitivity and genomic sensitivity of the RT-LAMP kit were 8.8 × 100 CFU ml-1 and 4.61 fg µl-1, respectively. The sensitivity of the visual LAMP kit was 2.35 × 100 CFU ml-1 and 4.61 fg µl-1. Both kits had excellent specificity and anti-interference performance. In addition, milk inoculated with 2.26 × 100 CFU ml-1E. coli O157:H7 could be detected within the reaction time after enrichment for 3 h. The results showed that the LAMP kits were rapid, sensitive, and specific for the detection of E. coli O157:H7 in food and had good application prospects in food safety surveillance.


Assuntos
Escherichia coli O157 , Humanos , Escherichia coli O157/genética , Sensibilidade e Especificidade , Microbiologia de Alimentos
6.
World J Microbiol Biotechnol ; 39(5): 113, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907904

RESUMO

Bacillomycin D is a cyclic antimicrobial lipopeptide that has excellent antifungal effects, but its application is limited due to its low yield. At present, it is not clear whether fatty acids regulate the synthesis of bacillomycin D. Therefore, the effects of nine fatty acids on the yield of bacillomycin D produced by Bacillus amyloliquefaciens fmbJ were studied. The results showed that sodium propionate, propionic acid, and butyric acid could increase the yield of bacillomycin D by 44, 40, and 10%, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression levels of bacillomycin D synthesis gene, signaling factors and genes related to fatty acid metabolism, so as to explore the mechanism of sodium propionate regulating bacillomycin D synthesis. In conclusion, sodium propionate could accelerate the tricarboxylic acid cycle and promoted spore formation, cell movement, the secretion of extracellular protease and the transcription of bacillomycin D synthesis gene by upregulating the expression of signal factors degU, degQ, sigH, sigM and spo0A and ultimately promoted the synthesis of bacillomycin D. In this study, the mechanism of sodium propionate increasing bacillomycin D production was explored from multiple perspectives, which provided theoretical support for the large-scale production of bacillomycin D and was expected to promote its wide application in food, agriculture and medicine fields.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Ácidos Graxos , Propionatos
7.
Mol Microbiol ; 116(1): 298-310, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660340

RESUMO

The synthesis of plantaricin in Lactobacillus plantarum is regulated by quorum sensing. However, the nature of the extra-cytoplasmic (EC) sensing domain of the histidine kinase (PlnB1) and the ability to recognize the auto-inducing peptide PlnA1 is not known. We demonstrate the key motif Ile-Ser-Met-Leu of auto-inducing peptide PlnA1 binds to the hydrophobic region Phe-Ala-Ser-Gln-Phe of EC loop 2 of PlnB1 via hydrophobic interactions and hydrogen bonding. Moreover, we identify a new inducer, acetate, that regulates the synthesis of plantaricin by binding to a positively charged region (Arg-Arg-Tyr-Ser-His-Lys) in loop 4 of PlnB1 via electrostatic interaction. The side chain of Phe143 on loop 4 determined the specificity and affinity of PlnB1 to recognize acetate. PlnA1 activates quorum sensing in log phase growth and acetate in stationary phase to maintain the synthesis of plantaricin under conditions of reduced growth. Acetate activation of PlnB was also evident in four types of PlnB present in different Lb. plantarum strains. Finally, we proposed a model to explain the developmental regulation of plantaricin synthesis by PlnA and acetate. These results have potential applications in improving food fermentation and bacteriocin production.


Assuntos
Acetatos/metabolismo , Bacteriocinas/metabolismo , Lactobacillus plantarum/metabolismo , Precursores de Proteínas/metabolismo , Percepção de Quorum/fisiologia , Bacteriocinas/biossíntese , Sítios de Ligação/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Lactobacillus plantarum/genética , Ligação Proteica/fisiologia , Precursores de Proteínas/biossíntese
8.
Environ Microbiol ; 24(10): 4818-4833, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36254863

RESUMO

Overexpression of Staphylococcus aureus efflux pumps is commonly associated with antibiotic resistance, causing conventional antibiotics to be unsuccessful in combating multidrug-resistant bacterial infections. Reducing the activity of the efflux pump is an urgently required to tackle this problem. Here, we found that plantaricin A (PlnA), an antimicrobial peptide derived from Lactobacillus plantarum, had a synergistic effect with ciprofloxacin (CIP), reducing the IC90 of CIP by eight times. Subsequently, changes in membrane permeability, membrane potential, and reactive oxygen species (ROS) were determined; changes that did not explain the synergistic effect were previously observed. Ethidium bromide intake and efflux experiments showed that PlnA inhibited the function of the efflux pump by binding it and altering the structure of MepA, NorA, and LmrS. Then, a series of PlnA mutants were designed to explore the underlying mechanism; they showed that the charge and foaming of PlnA were the predominant factors affecting the structure of NorA. In a skin wound infection model, PlnA significantly reduced the dose of CIP, relieved inflammation, and promoted wound healing, indicating that PlnA and CIP synergy persisted in vivo. Overall, PlnA reduced the use of CIP for combination therapy, and allowing the continued used of CIP to kill MDR S. aureus. Multidrug-resistant Staphylococcus aureus threatens our life as a tenacious pathogen, which causes infections in hospitals, communities and animal husbandry. Various studies have showed that efflux pump inhibitors (EPIs) have been considered potential therapeutic agents for rejuvenating the activity of antibiotics. Unfortunately, small molecule EPIs exhibit several side effects that limit their use for clinical application. The present study showed a new EPI (plantaricin A) produced by Lactobacillus plantarum, which has low cytotoxicity and haemolysis and powerful inhibitory activity on efflux pumps. Therefore, it helps the design of new EPIs and controls the infection of MDR S. aureus.


Assuntos
Ciprofloxacina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Bacteriocinas , Ciprofloxacina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Farmacorresistência Bacteriana Múltipla
9.
Appl Environ Microbiol ; 88(10): e0037122, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35499329

RESUMO

The outer membrane of Gram-negative bacteria is one of the major factors contributing to the development of antibiotic resistance, resulting in a lack of effectiveness of several hydrophobic antibiotics. Plantaricin A (PlnA) intensifies the potency of antibiotics by increasing the permeability of the bacterial outer membrane. Moreover, it has been proven to bind to the lipopolysaccharide of Escherichia coli via electrostatic and hydrophobic interactions and to interfere with the integrity of the bacterial outer membrane. Based on this mechanism, we designed a series of PlnA1 analogs by changing the structure, hydrophobicity, and charge to enhance their membrane-permeabilizing ability. Subsequent analyses revealed that among the PlnA1 analogs, OP4 demonstrated the highest penetrating ability, weaker cytotoxicity, and a higher therapeutic index. In addition, it decelerated the development of antibiotic resistance when the E. coli cells were continuously exposed to sublethal concentrations of erythromycin and ciprofloxacin for 30 generations. Further in vivo studies in mice with sepsis showed that OP4 heightens the potency of erythromycin against E. coli and relieves inflammation. In summary, our results showed that the PlnA1 analogs investigated in the present study, especially OP4, reduce the intrinsic antibiotic resistance of Gram-negative pathogens and expand the antibiotic sensitivity spectrum of hydrophobic antibiotics in Gram-negative bacteria. IMPORTANCE Antibiotic resistance is a global health concern due to indiscriminate use of antibiotics, resistance transfer, and intrinsic resistance of certain Gram-negative bacteria. The asymmetric bacterial outer membrane prevents the entry of hydrophobic antibiotics and renders them ineffective. Consequently, these antibiotics could be employed to treat infections caused by Gram-negative bacteria, after increasing their outer membrane permeability. As PlnA reportedly penetrates outer membranes, we designed a series of PlnA1 analogs and proved that OP4, one of these antimicrobial peptides, effectively augmented the permeability of the bacterial outer membrane. Furthermore, OP4 effectively improved the potency of erythromycin and alleviated inflammatory responses caused by Escherichia coli infection. Likewise, OP4 curtailed antibiotic resistance development in E. coli, thereby prolonging exposure to sublethal antibiotic concentrations. Thus, the combined use of hydrophobic antibiotics and OP4 could be used to treat infections caused by Gram-negative bacteria by decreasing their intrinsic antibiotic resistance.


Assuntos
Antibacterianos , Bacteriocinas , Infecções por Escherichia coli , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Farmacorresistência Bacteriana , Eritromicina , Escherichia coli/química , Bactérias Gram-Negativas , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Testes de Sensibilidade Microbiana
10.
J Appl Microbiol ; 133(3): 1597-1609, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35689810

RESUMO

AIMS: A novel endolysin Salmcide-p1 was developed as a promising candidate of new preservative and a supplement to effective enzyme preparations against gram-negative bacterial contaminations. METHODS AND RESULTS: Salmcide-p1 was identified by complementing the genomic sequence of a virulent Salmonella phage fmb-p1. Salmcide-p1 of 112 µg ml-1 could quickly kill Salmonella incubated with 100 mmol l-1 EDTA, with no haemolytic activity. Meanwhile, Salmcide-p1 had a high activity of lysing Salmonella cell wall peptidoglycan. At different temperatures (4-75°C), pH (4-11) and NaCl concentration (10-200 mmol l-1 ), the relative activity of Salmcide-p1 was above 60%. At 4°C, the combination of Salmcide-p1 and EDTA-2Na could inhibit the number of Salmonella Typhimurium CMCC 50115 in skim milk to less than 4 log CFU ml-1 by 3 days, and the number of Shigella flexneri CMCC 51571 was lower than 4 log CFU ml-1 by 9 days. CONCLUSIONS: Salmcide-p1 had a wide bactericidal activity against gram-negative bacteria and showed a broader anti-Salmonella spectrum than the phage fmb-p1. The combination strategy of Salmcide-p1 and EDTA-2Na could significantly inhibit the growth of gram-negative bacteria inoculated in skim milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophage endolysin as an antibacterial agent is considered to be a new strategy against bacterial contamination.


Assuntos
Bacteriófago P1 , Bacteriófagos , Antibacterianos/farmacologia , Bacteriófagos/genética , Ácido Edético/farmacologia , Endopeptidases/genética , Endopeptidases/farmacologia , Bactérias Gram-Negativas , Salmonella typhimurium/genética
11.
Can J Microbiol ; 68(4): 259-268, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35025610

RESUMO

Salmonella enterica serovar Paratyphi C is highly adapted to humans and can cause a typhoid-like disease with high mortality rates. In this study, three serovar-specific genes were identified by comparative genomics for Salmonella Paratyphi C, SPC_0871, SPC_0872, and SPC_0908. Based on the SPC_0908 and xcd genes for testing Salmonella spp., we developed a duplex real-time nucleic acid sequence-based amplification (real-time NASBA) with a molecular beacon approach for the simultaneous detection of viable cells of Salmonella spp. and serotype Paratyphi C. The test selectively and consistently detected 53 Salmonella spp. (representing 31 serotypes) and 18 non-Salmonella strains. Additionally, the method showed high resistance to interference from natural background flora in pork and chicken samples. The sensitivity of the established approach was determined to be 4.89 cfu/25 g in artificially contaminated pork and chicken samples after pre-enrichment. We propose this NASBA-based protocol as a potential detection method for Salmonella spp. and serotype Paratyphi C in foods of animal origin.


Assuntos
Salmonella paratyphi C , Replicação de Sequência Autossustentável , Animais , Microbiologia de Alimentos , Salmonella/genética , Salmonella paratyphi A/genética , Salmonella paratyphi C/genética , Sorogrupo
12.
J Mater Sci Mater Med ; 33(10): 75, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243895

RESUMO

Xenograft bone scaffolds have certain advantages such as mechanical strength, osteoinductive properties, sufficient source and safety. This study aimed to compare osteogenesis of the two main bovine bone xenografts namely true bone ceramics (TBC) and decalcified bone matrix (DBM), and TBC or DBM combined with bone morphogenetic protein (BMP)-2 (TBC&BMP-2 and DBM&BMP-2). The characteristics of TBC and DBM were investigated by observing the appearance and scanning electron microscopic images, examining mechanical strength, evaluating cytotoxicity and detecting BMP-2 release after being combined with BMP-2 in vitro. The femoral condyle defect and radial defect models were successively established to evaluate the performance of the proposed scaffolds in repairing cortical and cancellous bone defects. General observation, hematoxylin and eosin (HE) staining, mirco-CT scanning, calcein double labeling, X-ray film observation, three-point bending test in vivo were then performed. It indicated that the repair with xenograft bone scaffolds of 8 weeks were needed and the repair results were better than those of 4 weeks whatever the type of defects. To femoral condyle defect, TBC and TBC&BMP-2 were better than DBM and DBM&BMP-2, and TBC&BMP-2 was better than TBC alone; to radial defect, DBM and DBM&BMP-2 were better than TBC and TBC&BMP-2, and DBM&BMP-2 was better than DBM alone. This study has shown that TBC and DBM xenograft scaffolds can be more suitable for the repair of cancellous bone and cortical bone defects for 8 weeks in rats, respectively. We also have exhibited the use of BMP-2 in combination with DBM or TBC provides the possibility to treat bone defects more effectively. We thus believe that we probably need to select the more suitable scaffold according to bone defect types, and both TBC and DBM are promising xenograft materials for bone tissue engineering and regenerative medicine. Graphical abstract.


Assuntos
Matriz Óssea , Osteogênese , Animais , Produtos Biológicos , Bovinos , Cerâmica , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/farmacologia , Xenoenxertos , Humanos , Minerais , Ratos , Alicerces Teciduais
13.
Molecules ; 27(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235209

RESUMO

To extend the application range of L-asparaginase in food pre-processing, the thermostability improvement of the enzyme is essential. Herein, two non-conserved cysteine residues with easily oxidized free sulfhydryl groups, Cys8 and Cys283, of Acinetobacter soli L-asparaginase (AsA) were screened out via consensus design. After saturation mutagenesis and combinatorial mutation, the mutant C8Y/C283Q with highly improved thermostability was obtained with a half-life of 361.6 min at 40 °C, an over 34-fold increase compared with that of the wild-type. Its melting temperature (Tm) value reaches 62.3 °C, which is 7.1 °C higher than that of the wild-type. Molecular dynamics simulation and structure analysis revealed the formation of new hydrogen bonds of Gln283 and the aromatic interaction of Tyr8 formed with adjacent residues, resulting in enhanced thermostability. The improvement in the thermostability of L-asparaginase could efficiently enhance its effect on acrylamide inhibition; the contents of acrylamide in potato chips were efficiently reduced by 86.50% after a mutant C8Y/C283Q treatment, which was significantly higher than the 59.05% reduction after the AsA wild-type treatment. In addition, the investigation of the mechanism behind the enhanced thermostability of AsA could further direct the modification of L-asparaginases for expanding their clinical and industrial applications.


Assuntos
Asparaginase , Cisteína , Acinetobacter , Acrilamida , Asparaginase/química , Asparaginase/genética , Estabilidade Enzimática , Cinética , Temperatura
14.
Microb Pathog ; 154: 104856, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33766633

RESUMO

Enterohaemorrhagic Escherichia coli (EHEC) is a prominent foodborne pathogen that causes infectious intestinal diarrhoea. Lactobacillus is a recognized probiotic that inhibits intestinal pathogens and maintains the balance of the intestinal flora. The purpose of this study was to investigate the regulatory effects of three Lactobacillus strains, L. johnsonii, L. plantarum, and L. rhamnosus, on the intestinal flora of EHEC-infected mice. The initial weight and diarrhoea index of the mice were recorded. After 21 days, the faeces of the mice were subjected to 16S rDNA high-throughput sequencing. The diarrhoea index of mice treated with Lactobacillus improved, their body weight continued to rise, and their liver index gradually decreased. The α diversity analysis showed that the intestinal flora diversity and abundance were lower in mice infected with EHEC than in healthy mice. L. plantarum, L. johnsonii, and L. rhamnosus significantly improved the diversity of the flora species. In terms of flora composition, the three main phyla present were Bacteroidetes, Firmicutes, and Proteobacteria. The abundance of these three phyla was reduced to 93.81% after infection and restored to over 96.30% after treatment. At the genus level, Lactobacillus reduced the abundance of Bacteroides, Helicobacter pylori, and Shigella, while increasing the abundance of butyric acid-producing bacteria and Lactobacillus. Finally, a heat map and non-metric multidimensional scaling analysis showed that the intestinal flora structures in the L. johnsonii, L. plantarum, and L. rhamnosus treatment groups were closest to those of healthy mice. In conclusion, L. johnsonii, L. plantarum, and L. rhamnosus regulated and improved the structure of intestinal flora and relieved diarrhoea caused by EHEC infection.


Assuntos
Escherichia coli Êntero-Hemorrágica , Microbioma Gastrointestinal , Probióticos , Animais , Diarreia/terapia , Lactobacillus , Camundongos
15.
Appl Microbiol Biotechnol ; 105(7): 2713-2723, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33710357

RESUMO

Plantaricin EF, a kind of natural antibacterial substance, has shown inhibitory effect on most pathogen and spoilage microorganisms, which possessed great potential in food preservation. However, the lower production of plantaricin EF has limited its large-scale production and application. In this study, the effect of maltose on plantaricin EF production and its regulation mechanism in Lactobacillus plantarum 163 were investigated. Maltose significantly improved the biomass and plantaricin EF production, which increased by 3.35 and 3.99 times comparing to the control without maltose, respectively. The maximum production of plantaricin E and F in fed-batch fermentation were 10.55 mg/L and 22.94 mg/L, respectively. Besides, qPCR results showed that maltose remarkably improved transcription of plnA, plnB, plnD, plnE, plnF, plnG1 and plnH, and heighten transcription of lamR, lamK, hpk6 and rrp6. These results provided an effective method to enhance plantaricin EF production and revealed a possible regulatory mechanism from transcriptome results that hpk6, rrp6, lamK and lamR were relative to plantaricin EF production. Genes, hpk6 and rrp6, promote transcription of plnG1, whereas lamK and lamR enhance transcription of plnA, plnB and plnD, which increased plantaricin EF production. KEYPOINTS: • Maltose was proved to be effective in promoting the biosynthesis of plantaricin EF. • Maltose promoted the transcription of biosynthesis and secretion genes of plantaricin EF. • Up-regulation of genes lamR, lamK, hpk6 and rrp6 heightened the plantaricin EF production.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Bacteriocinas/genética , Bacteriocinas/metabolismo , Fermentação , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Maltose
16.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833997

RESUMO

The soft rot disease caused by Rhizopus stolonifer is an important disease in cherry tomato fruit. In this study, the effect of iturin A on soft rot of cherry tomato and its influence on the storage quality of cherry tomato fruit were investigated. The results showed that 512 µg/mL of iturin A could effectively inhibit the incidence of soft rot of cherry tomato fruit. It was found that iturin A could induce the activity of resistance-related enzymes including phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), glucanase (GLU), and chitinase (CHI), and active oxygen-related enzymes including ascorbate peroxidases (APX), superoxide dismutases (SOD), catalases (CAT), and glutathione reductase (GR) of cherry tomato fruit. In addition, iturin A treatment could slow down the weight loss of cherry tomato and soften the fruit. These results indicated that iturin A could retard the decay and improve the quality of cherry tomato fruit by both the inhibition growth of R. stolonifera and the inducing the resistance.


Assuntos
Resistência a Medicamentos/efeitos dos fármacos , Frutas/metabolismo , Peptídeos Cíclicos/farmacologia , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/microbiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Proteínas de Plantas/biossíntese , Raízes de Plantas/microbiologia , Rhizopus/crescimento & desenvolvimento
17.
Appl Microbiol Biotechnol ; 104(8): 3529-3540, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32103313

RESUMO

Malassezia globosa is an opportunistic pathogen that causes various skin disorders, which disturbs people's life all the time, and conventional drugs are not completely satisfactory. Bacillomycin D (BD), an antifungal lipopeptide, could inhibit various fungi growth. However, the reports about its effect on M. globosa were not found yet. In this study, we showed that BD and BD-C16 (fatty acid chain had sixteen carbon atoms) completely inhibited growth of M. globosa at concentration of 64 µg/ml in 15 h, which was confirmed with the observation of irregular morphological change of M. globosa treated with BD. Significantly, the study on the working mechanism showed that BD induced cell death by changing cell membrane permeability and thus promoting the release of cellular contents, which may be mediated by the interaction between BD and ergosterol from membrane. Further study showed that BD reduced the overall content of cellular sterol, and interestingly, the expression of some genes involved in membrane and ergosterol synthesis were significantly upregulated, which was likely to be a feedback regulation. Besides, we found that BD had additive and synergistic effects with ketoconazole and amphotericin B, respectively, on inhibition of M. globosa, suggesting that combination use of BD with other commercial drugs could be a promising strategy to relieve skin disorders caused by M. globosa. KEY POINTS: • BD could efficiently inhibit the growth of M. globosa. • BD increases cell membrane permeability and thus promotes the release of cellular contents. • BD has additive or synergistic effect with other antifungal drugs.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Malassezia/efeitos dos fármacos , Malassezia/crescimento & desenvolvimento , Ergosterol/farmacologia , Testes de Sensibilidade Microbiana , Sorbitol/farmacologia
18.
Appl Microbiol Biotechnol ; 104(18): 7957-7970, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803295

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug, due to its wide distribution and multidrug resistance. To characterize effects of a newly identified plantaricin GZ1-27 on MRSA, transcriptomic and proteomic profiling of MRSA strain ATCC43300 was performed in response to sub-MIC (16 µg/mL) plantaricin GZ1-27 stress. In total, 1090 differentially expressed genes (padj < 0.05) and 418 differentially expressed proteins (fold change > 1.2, p < 0.05) were identified. Centralized protein expression clusters were predicted in biological functions (biofilm formation, DNA replication and repair, and heat-shock) and metabolic pathways (purine metabolism, amino acid metabolism, and biosynthesis of secondary metabolites). Moreover, a capacity of inhibition MRSA biofilm formation and killing biofilm cells were verified using crystal violet staining, scanning electron microscopy, and confocal laser-scanning microscopy. These findings yielded comprehensive new data regarding responses induced by plantaricin and could inform evidence-based methods to mitigate MRSA biofilm formation.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Bacteriocinas/genética , Biofilmes , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Proteômica , Transcriptoma
19.
Appl Microbiol Biotechnol ; 103(18): 7663-7674, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31297555

RESUMO

The inhibitory effect of Bacillomycin D, a cyclic lipopeptide, on Rhizopus stolonifer colonization of cherry tomato was studied, and its possible mechanism of action was explored. Bacillomycin D showed a direct inhibitory effect on R. stolonifer spore germination and mycelial growth in vitro. It conferred both a direct inhibitory effect on R. stolonifer growth in cherry tomato in vivo and induced host resistance in cherry tomato. Moreover, Bacillomycin D treatment significantly increased the activities of plant defense-related enzymes, including chitinase (CHI), ß-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and peroxidase (POD). Real-time PCR (RT-PCR) showed that defense-related genes involved in the salicylic acid defense signaling pathway and genes encoding pathogenesis-related proteins were up-regulated in Bacillomycin D treatment. Furthermore, Bacillomycin D-C16 resulted in direct inhibition and a remarkable induced resistance to R. stolonifer which was higher than as induced by Bacillomycin D-C14. Together, the data indicated that Bacillomycin D can control the growth of R. stolonifer through both the direct inhibition of the fungus and the activation of defense-related genes and enzymes in cherry tomato.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Frutas/microbiologia , Rhizopus/efeitos dos fármacos , Rhizopus/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Quitinases/metabolismo , Frutas/enzimologia , Glucana 1,3-beta-Glucosidase/metabolismo , Solanum lycopersicum/enzimologia , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
20.
Can J Microbiol ; 65(7): 477-485, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30865841

RESUMO

Salmonella enterica serovar Heidelberg causes foodborne infections and is a major threat to the food chain and public health. In this study, we aimed to develop a rapid molecular typing approach to identify Salmonella enterica serovar Heidelberg. Using comparative genomics, four serovar-specific gene fragments were identified, and a real-time polymerase chain reaction (PCR) combined with a propidium monoazide (PMA) pretreatment method was developed for simultaneous detection of viable Salmonella sp. (invA) and Salmonella Heidelberg (SeHA_C3258). The assay showed 100% specificity for all strains tested. The assay was able to distinguish effectively viable or dead cells with the PMA. The detection limit was 2.4 CFU/mL following 6 h of incubation in enrichment Luria-Bertani medium, and the assay could detect 1.7 × 102 CFU/mL in the presence of pork background flora. In artificially contaminated pork, real-time PCR detected inoculum levels of 1.15 CFU/25 g of pork after a 6 h enrichment. Thus, our findings indicated that this comparative genomics approach could be used to screen for serovar-specific fragments and that real-time PCR with PMA was a simple and reliable method for detecting viability of Salmonella species and Salmonella Heidelberg.


Assuntos
Azidas , Tipagem Molecular/métodos , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/métodos , Carne Vermelha/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Microbiologia de Alimentos , Salmonella enterica/classificação , Salmonella enterica/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA