Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 69(1): 13-21, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017484

RESUMO

Asthma is a chronic inflammatory airway disease driven by various infiltrating immune cell types into the lung. Optical microscopy has been used to study immune infiltrates in asthmatic lungs. Confocal laser scanning microscopy (CLSM) identifies the phenotypes and locations of individual immune cells in lung tissue sections by employing high-magnification objectives and multiplex immunofluorescence staining. In contrast, light-sheet fluorescence microscopy (LSFM) can visualize the macroscopic and mesoscopic architecture of whole-mount lung tissues in three dimensions (3D) by adopting an optical tissue-clearing method. Despite each microscopy method producing image data with unique resolution from a tissue sample, CLSM and LSFM have not been applied together because of different tissue-preparation procedures. Here, we introduce a new approach combining LSFM and CLSM into a sequential imaging pipeline. We built a new optical tissue clearing workflow in which the immersion clearing agent can be switched from an organic solvent to an aqueous sugar solution for sequential 3D LSFM and CLSM of mouse lungs. This sequential combination microscopy offered quantitative 3D spatial analyses of the distribution of immune infiltrates in the same mouse asthmatic lung tissue at the organ, tissue, and cell levels. These results show that our method facilitates multiresolution 3D fluorescence microscopy as a new imaging approach providing comprehensive spatial information for a better understanding of inflammatory lung diseases.


Assuntos
Asma , Imageamento Tridimensional , Animais , Camundongos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Pulmão/diagnóstico por imagem , Asma/diagnóstico por imagem , Microscopia Confocal/métodos
2.
Microcirculation ; 30(7): e12826, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605603

RESUMO

OBJECTIVE: Three-dimensional (3D) microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and their association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). METHODS: We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image-processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. RESULTS: Chamber-specific pathological alterations of LyVs were identified, and significant changes were seen in the right atrium (RA). TG hearts had a higher volume percent of ER-TR7+ fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7+ volume percent and both LyV segment density and median diameter. CONCLUSIONS: This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.


Assuntos
Coração , Vasos Linfáticos , Camundongos , Animais , Camundongos Transgênicos , Vasos Coronários , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional
3.
Lab Invest ; 99(9): 1400-1413, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30401959

RESUMO

Enumeration of tumor-infiltrating lymphocytes (TILs) in H&E stained tissue sections has demonstrated limited value in predicting immune responses to cancer immunotherapy, likely reflecting the diversity of cell types and immune activation states among tumor infiltrates. Multiparametric flow cytometry enables robust phenotypic and functional analysis to distinguish suppression from activation, but tissue dissociation eliminates spatial context. Multiplex methods for immunohistochemistry (IHC) are emerging, but these interrogate only a single tissue section at a time. Here, we report transparent tissue tomography (T3) as a tool for three-dimensional (3D) imaging cytometry in the complex architecture of the tumor microenvironment, demonstrating multiplexed immunofluorescent analysis in core needle biopsies. Using T3 imaging, image processing and machine learning to map CD3+CD8+ cytotoxic T cells (CTLs) in whole core needle biopsies from Her2+ murine mammary tumors and human head and neck surgical specimens revealed marked inhomogeneity within single needle cores, confirmed by serial section IHC. Applying T3 imaging cytometry, we discovered a strong spatial correlation between CD3+CD8+ CTLs and microvasculature in the EGFR+ parenchyma, revealing significant differences among head and neck cancer patients. These results show that T3 offers simple and rapid access to three-dimensional and quantitative maps of the tumor microenvironment and immune infiltrate, offering a new diagnostic tool for personalized cancer immunotherapy.


Assuntos
Biópsia com Agulha de Grande Calibre/métodos , Imageamento Tridimensional/métodos , Linfócitos do Interstício Tumoral/imunologia , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Citometria por Imagem/métodos , Imuno-Histoquímica/métodos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(27): 7551-6, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27317748

RESUMO

Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Neoplasias Experimentais/patologia , Actinas/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Proteínas de Fluorescência Verde , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 112(47): E6486-95, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26604306

RESUMO

Defects in the innate immune system in the lung with attendant bacterial infections contribute to lung tissue damage, respiratory insufficiency, and ultimately death in the pathogenesis of cystic fibrosis (CF). Professional phagocytes, including alveolar macrophages (AMs), have specialized pathways that ensure efficient killing of pathogens in phagosomes. Phagosomal acidification facilitates the optimal functioning of degradative enzymes, ultimately contributing to bacterial killing. Generation of low organellar pH is primarily driven by the V-ATPases, proton pumps that use cytoplasmic ATP to load H(+) into the organelle. Critical to phagosomal acidification are various channels derived from the plasma membrane, including the anion channel cystic fibrosis transmembrane conductance regulator, which shunt the transmembrane potential generated by movement of protons. Here we show that the transient receptor potential canonical-6 (TRPC6) calcium-permeable channel in the AM also functions to shunt the transmembrane potential generated by proton pumping and is capable of restoring microbicidal function to compromised AMs in CF and enhancement of function in non-CF cells. TRPC6 channel activity is enhanced via translocation to the cell surface (and then ultimately to the phagosome during phagocytosis) in response to G-protein signaling activated by the small molecule (R)-roscovitine and its derivatives. These data show that enhancing vesicular insertion of the TRPC6 channel to the plasma membrane may represent a general mechanism for restoring phagosome activity in conditions, where it is lost or impaired.


Assuntos
Membranas Intracelulares/metabolismo , Fagossomos/metabolismo , Canais de Cátion TRPC/metabolismo , Ácidos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diglicerídeos/metabolismo , Exocitose/efeitos dos fármacos , Imunofluorescência , Humanos , Membranas Intracelulares/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Fagossomos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Purinas/química , Purinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Roscovitina , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Canal de Cátion TRPC6
6.
Am J Physiol Gastrointest Liver Physiol ; 312(2): G112-G122, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979825

RESUMO

Cecal crypts represent a unique niche that are normally occupied by the commensal microbiota. Due to their density and close proximity to stem cells, microbiota within cecal crypts may modulate epithelial regeneration. Here we demonstrate that surgical stress, a process that invariably involves a short period of starvation, antibiotic exposure, and tissue injury, results in cecal crypt evacuation of their microbiota. Crypts devoid of their microbiota display pathophysiological features characterized by abnormal stem cell activation as judged by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) staining, expansion of the proliferative zone toward the tips of the crypts, and an increase in apoptosis. In addition, crypts devoid of their microbiota display loss of their regenerative capacity as assessed by their ability to form organoids ex vivo. When a four-member human pathogen community isolated from the stool of a critically ill patient is introduced into the cecum of mice with empty crypts, crypts become occupied by the pathogens and further disruption of crypt homeostasis is observed. Fecal microbiota transplantation restores the cecal crypts' microbiota, normalizes homeostasis within crypts, and reestablishes crypt regenerative capacity. Taken together, these findings define an emerging role for the microbiota within cecal crypts to maintain epithelial cell homeostasis in a manner that may enhance recovery in response to the physiological stress imposed by the process of surgery. NEW & NOTEWORTHY: This study provides novel insight into the process by which surgical injury places the intestinal epithelium at risk for colonization by pathogenic microbes and impairment of its regenerative capacity via loss of its microbiota. We show that fecal transplant restores crypt homeostasis in association with repopulation of the microbiota within cecal crypts.


Assuntos
Ceco/microbiologia , Mucosa Intestinal/fisiologia , Microbiota , Animais , Ceco/ultraestrutura , Regulação da Expressão Gênica , Homeostase , Mucosa Intestinal/microbiologia , Mucosa Intestinal/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778334

RESUMO

Objective: 3D microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). Methods: We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic (NTG) and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. Results: Chamber-specific pathological alterations of LyVs were identified, but most significantly in the right atrium (RA). TG hearts had a higher volume fraction of ER-TR7 + fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7 + volume fraction and both LyV segment density and median diameter. Conclusions: This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.

8.
Nat Cell Biol ; 4(10): 826-31, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12360295

RESUMO

Protein aggregation and the formation of inclusion bodies are hallmarks of the cytopathology of neurodegenerative diseases, including Huntington's disease, Amyotropic lateral sclerosis, Parkinson's disease and Alzheimer's disease. The cellular toxicity associated with protein aggregates has been suggested to result from the sequestration of essential proteins that are involved in key cellular events, such as transcription, maintenance of cell shape and motility, protein folding and protein degradation. Here, we use fluorescence imaging of living cells to show that polyglutamine protein aggregates are dynamic structures in which glutamine-rich proteins are tightly associated, but which exhibit distinct biophysical interactions. In contrast, the interaction between wild-type, but not mutant, Hsp70 exhibits rapid kinetics of association and dissociation similar to interactions between Hsp70 and thermally unfolded substrates. These studies provide new insights into the composite organization and formation of protein aggregates and show that molecular chaperones are not sequestered into aggregates, but are instead transiently associated.


Assuntos
Células Eucarióticas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Corpos de Inclusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos/metabolismo , Animais , Proteínas de Bactérias , Compartimento Celular/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico HSP70/genética , Células HeLa , Humanos , Corpos de Inclusão/genética , Proteínas Luminescentes , Substâncias Macromoleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/genética , Dobramento de Proteína , Proteínas Recombinantes de Fusão , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo
9.
J Biol Chem ; 284(51): 35926-38, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19837664

RESUMO

Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933-944). Lysosomes and phagosomes in murine cftr(-/-) AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, DeltaF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR DeltaF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr(-/-), as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/mortalidade , Lisossomos/metabolismo , Macrófagos Alveolares/metabolismo , Fagossomos/metabolismo , Animais , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Lisossomos/genética , Lisossomos/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Mutação , Fagossomos/genética , Fagossomos/patologia
10.
Mol Cancer Ther ; 18(1): 213-226, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322947

RESUMO

Macromolecular cancer drugs such as therapeutic antibodies and nanoparticles are well known to display slow extravasation and incomplete penetration into tumors, potentially protecting cancer cells from therapeutic effects. Conventional assays to track macromolecular drug delivery are poorly matched to the heterogeneous tumor microenvironment, but recent progress on optical tissue clearing and three-dimensional (3D) tumor imaging offers a path to quantitative assays with cellular resolution. Here, we apply transparent tissue tomography (T3) as a tool to track perfusion and delivery in the tumor and to evaluate target binding and vascular permeability. Using T3, we mapped anti-programmed cell death protein-ligand 1 (PD-L1) antibody distribution in whole mouse tumors. By measuring 3D penetration distances of the antibody drug out from the blood vessel boundaries into the tumor parenchyma, we determined spatial pharmacokinetics of anti-PD-L1 antibody drugs in mouse tumors. With multiplex imaging of tumor components, we determined the distinct distribution of anti-PD-L1 antibody drug in the tumor microenvironment with different PD-L1 expression patterns. T3 imaging revealed CD31+ capillaries are more permeable to anti-PD-L1 antibody transport compared with the blood vessels composed of endothelium supported by vascular fibroblasts and smooth muscle cells. T3 analysis also confirmed that isotype IgG antibody penetrates more deeply into tumor parenchyma than anti-Her2 or anti-EGFR antibody, which were restrained by binding to their respective antigens on tumor cells. Thus, T3 offers simple and rapid access to 3D, quantitative maps of macromolecular drug distribution in the tumor microenvironment, offering a new tool for development of macromolecular cancer therapeutics.


Assuntos
Antineoplásicos Imunológicos/farmacocinética , Antígeno B7-H1/antagonistas & inibidores , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Mamárias Animais/diagnóstico por imagem , Receptor ErbB-2/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/administração & dosagem , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Imagem Molecular , Microambiente Tumoral
11.
Mol Cancer Res ; 17(6): 1338-1350, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885991

RESUMO

The metabolic reprogramming associated with characteristic increases in glucose and glutamine metabolism in advanced cancer is often ascribed to answering a higher demand for metabolic intermediates required for rapid tumor cell growth. Instead, recent discoveries have pointed to an alternative role for glucose and glutamine metabolites as cofactors for chromatin modifiers and other protein posttranslational modification enzymes in cancer cells. Beyond epigenetic mechanisms regulating gene expression, many chromatin modifiers also modulate DNA repair, raising the question whether cancer metabolic reprogramming may mediate resistance to genotoxic therapy and genomic instability. Our prior work had implicated N-acetyl-glucosamine (GlcNAc) formation by the hexosamine biosynthetic pathway (HBP) and resulting protein O-GlcNAcylation as a common means by which increased glucose and glutamine metabolism can drive double-strand break (DSB) repair and resistance to therapy-induced senescence in cancer cells. We have examined the effects of modulating O-GlcNAcylation on the DNA damage response (DDR) in MCF7 human mammary carcinoma in vitro and in xenograft tumors. Proteomic profiling revealed deregulated DDR pathways in cells with altered O-GlcNAcylation. Promoting protein O-GlcNAc modification by targeting O-GlcNAcase or simply treating animals with GlcNAc protected tumor xenografts against radiation. In turn, suppressing protein O-GlcNAcylation by blocking O-GlcNAc transferase activity led to delayed DSB repair, reduced cell proliferation, and increased cell senescence in vivo. Taken together, these findings confirm critical connections between cancer metabolic reprogramming, DDR, and senescence and provide a rationale to evaluate agents targeting O-GlcNAcylation in patients as a means to restore tumor sensitivity to radiotherapy. IMPLICATIONS: The finding that the HBP, via its impact on protein O-GlcNAcylation, is a key determinant of the DDR in cancer provides a mechanistic link between metabolic reprogramming, genomic instability, and therapeutic response and suggests novel therapeutic approaches for tumor radiosensitization.


Assuntos
Acilação/genética , Proliferação de Células/genética , Senescência Celular/genética , Reparo do DNA/genética , Animais , Vias Biossintéticas/genética , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Epigênese Genética/genética , Feminino , Instabilidade Genômica/genética , Glucose/genética , Glutamina/genética , Células HEK293 , Hexosaminas/genética , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , N-Acetilglucosaminiltransferases/genética , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos
12.
Sci Rep ; 7(1): 17031, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208908

RESUMO

Recent developments in optical tissue clearing and microscopic imaging have advanced three-dimensional (3D) visualization of intact tissues and organs at high resolution. However, to expand applications to oncology, critical limitations of current methods must be addressed. Here we describe transparent tissue tomography (T3) as a tool for rapid, three-dimensional, multiplexed immunofluorescent tumor imaging. Cutting tumors into sub-millimeter macrosections enables simple and rapid immunofluorescence staining, optical clearing, and confocal microscope imaging. Registering and fusing macrosection images yields high resolution 3D maps of multiple tumor microenvironment components and biomarkers throughout a tumor. The 3D maps can be quantitatively evaluated by automated image analysis. As an application of T3, 3D mapping and analysis revealed a heterogeneous distribution of programmed death-ligand 1 (PD-L1) in Her2 transgenic mouse mammary tumors, with high expression limited to tumor cells at the periphery and to CD31+ vascular endothelium in the core. Also, strong spatial correlation between CD45+ immune cell distribution and PD-L1 expression was revealed by T3 analysis of the whole tumors. Our results demonstrate that a tomographic approach offers simple and rapid access to high-resolution three-dimensional maps of the tumor immune microenvironment, offering a new tool to examine tumor heterogeneity.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias Mamárias Animais/patologia , Imagem Óptica/métodos , Tomografia Computadorizada por Raios X/métodos , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Feminino , Humanos , Masculino , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptor ErbB-2/metabolismo , Células Tumorais Cultivadas
13.
Neurochem Int ; 109: 126-140, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28433663

RESUMO

Global brain ischemia can lead to widespread neuronal death and poor neurologic outcomes in patients. Despite detailed understanding of the cellular and molecular mechanisms mediating neuronal death following focal and global brain hypoxia-ischemia, treatments to reduce ischemia-induced brain injury remain elusive. One pathway central to neuronal death following global brain ischemia is mitochondrial dysfunction, one consequence of which is the cascade of intracellular events leading to mitochondrial outer membrane permeabilization. A novel approach to rescuing injured neurons from death involves targeting cellular membranes using a class of synthetic molecules called Pluronics. Pluronics are triblock copolymers of hydrophilic poly[ethylene oxide] (PEO) and hydrophobic poly[propylene oxide] (PPO). Evidence is accumulating to suggest that hydrophilic Pluronics rescue injured neurons from death following substrate deprivation by preventing mitochondrial dysfunction. Here, we will review current understanding of the nature of interaction of Pluronic molecules with biological membranes and the efficacy of F-68, an 80% hydrophilic Pluronic, in rescuing neurons from injury. We will review data indicating that F-68 reduces mitochondrial dysfunction and mitochondria-dependent death pathways in a model of neuronal injury in vitro, and present new evidence that F-68 acts directly on mitochondria to inhibit mitochondrial outer membrane permeabilization. Finally, we will present results of a pilot, proof-of-principle study suggesting that F-68 is effective in reducing hippocampal injury induced by transient global ischemia in vivo. By targeting mitochondrial dysfunction, F-68 and other Pluronic molecules constitute an exciting new approach to rescuing neurons from acute injury.


Assuntos
Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Gerbillinae , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Projetos Piloto , Polietilenoglicóis/metabolismo , Propilenoglicóis/metabolismo , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia
14.
Diabetes ; 54(11): 3073-81, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16249428

RESUMO

Glucose-stimulated insulin secretion is associated with transients of intracellular calcium concentration ([Ca2+]i) in the pancreatic beta-cell. We tested the hypothesis that inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] [Ca2+]i release is incorporated in glucose-induced [Ca2+]i oscillations in mouse islets and MIN6 cells. We found that depletion of intracellular Ca2+ stores with thapsigargin increased the oscillation frequency by twofold and inhibited the slow recovery phase of [Ca2+]i oscillations. We employed a pleckstrin homology domain-containing fluorescent biosensor, phospholipase C partial differential pleckstrin homology domain-enhanced green fluorescent protein, to visualize Ins(1,4,5)P3 dynamics in insulin-secreting MIN6 cells and mouse islets in real time using a video-rate confocal system. In both types of cells, stimulation with carbamoylcholine (CCh) and depolarization with KCl results in an increase in Ins(1,4,5)P3 accumulation in the cytoplasm. When stimulated with glucose, the Ins(1,4,5)P3 concentration in the cytoplasm oscillates in parallel with oscillations of [Ca2+]i. Maximal accumulation of Ins(1,4,5)P3 in these oscillations coincides with the peak of [Ca2+]i and tracks changes in frequencies induced by the voltage-gated K+ channel blockade. We show that Ins(1,4,5)P3 release in insulin-secreting cells can be stimulated by depolarization-induced Ca2+ flux. We conclude that Ins(1,4,5)P3 concentration oscillates in parallel with [Ca2+]i in response to glucose stimulation, but it is not the driving force for [Ca2+]i oscillations.


Assuntos
Sinalização do Cálcio/fisiologia , Inositol 1,4,5-Trifosfato/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Carbacol/farmacologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Retículo Endoplasmático/enzimologia , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Cloreto de Potássio/farmacologia , Tapsigargina/farmacologia , Fosfolipases Tipo C/metabolismo
15.
Methods Mol Biol ; 319: 37-66, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16719350

RESUMO

Calcium (Ca2+) is a fundamentally important component of cellular signal transduction. Dynamic changes in the concentration of Ca2+ ([Ca2+]) in the cytoplasm and within organelles are tightly controlled and regulate a diverse array of biological activities, including fertilization, cell division, gene expression, cellular metabolism, protein biosynthesis, secretion, muscle contraction, intercellular communication, and cell death. Measurement of intracellular [Ca2+] is essential to understanding the role of Ca2+ and for defining the underlying regulatory mechanisms in any cellular process. A broad range of synthetic and biosynthetic fluorescent Ca2+ sensors are available that enable the visualization and quantification of subcellular spatio-temporal [Ca2+] gradients. This chapter describes the application of wide-field digitized video fluorescence microfluorometry and confocal microscopy to quantitatively image Ca2+ in cells with high temporal and spatial resolution.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Corantes Fluorescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Animais , Técnicas Biossensoriais , Técnicas de Cultura de Células , Células Cultivadas , Camundongos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Organelas/metabolismo , Organelas/ultraestrutura
16.
J Radiat Res ; 47(3-4): 245-57, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16960336

RESUMO

We applied a flow cytometric method to quantify IR-induced histone H2AX phosphorylation at serine 139 (gammaH2AX) and compared those values to those obtained using a standard microscopy based foci counting method. After PFA fixation, methanol permeabilization was suitable for both FITC- or Alexa647-gammaH2AX. In contrast, Alexa647-gammaH2AX was not suitable for ethanol permeabilization. Antibody concentrations at 1-2 microg/ml yielded the highest gammaH2AX positive percentage for both antibodies. Without DAPI staining, gammaH2AX formation can be measured as a relative fold increase. Values determined by bivariant flow cytometric analysis and those obtained using microscopic foci formation exhibited a good quantitative correlation. Values obtained by both methods could vary according to the gating or threshold setting used. gammaH2AX positive cells increased as a function of radiation dose (2-16 Gy) followed by a dose-dependent decay. The free radical scavenger N-acetyl-L-cysteine (NAC), if administered at a concentration of 4 mM 30 min before IR, was effective in reducing IR-induced gammaH2AX formation in all phases of the cell cycle. We have developed a simplified and quantitative flow cytometry based method to measure IR-induced gammaH2AX in cells and demonstrated strong correlation to values obtained by a standard automated digital microscopic foci analysis along with NIH ImageJ custom macro software.


Assuntos
Quebras de DNA , DNA/efeitos da radiação , Células Endoteliais/fisiologia , Células Endoteliais/efeitos da radiação , Citometria de Fluxo/métodos , Histonas/genética , Histonas/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Histonas/ultraestrutura , Humanos , Microcirculação/citologia , Microcirculação/fisiologia , Microcirculação/efeitos da radiação , Doses de Radiação , Radiação Ionizante
17.
Neuropsychopharmacology ; 41(8): 2178-87, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26979294

RESUMO

Repeated exposure to amphetamine leads to both associative conditioning and nonassociative sensitization. Here we assessed the contribution of neuronal ensembles in the nucleus accumbens (NAcc) to these behaviors. Animals exposed to amphetamine IP or in the ventral tegmental area (VTA) showed a sensitized locomotor response when challenged with amphetamine weeks later. Both exposure routes also increased ΔFosB levels in the NAcc. Further characterization of these ΔFosB+ neurons, however, revealed that amphetamine had no effect on dendritic spine density or size, indicating that these neurons do not undergo changes in dendritic spine morphology that accompany the expression of nonassociative sensitization. Additional experiments determined how neurons in the NAcc contribute to the expression of associative conditioning. A discrimination learning procedure was used to expose rats to IP or VTA amphetamine either Paired or Unpaired with an open field. As expected, compared with Controls, Paired rats administered IP amphetamine subsequently showed a conditioned locomotor response when challenged with saline in the open field, an effect accompanied by an increase in c-Fos+ neurons in the medial NAcc. Further characterization of these c-Fos+ cells revealed that Paired rats showed an increase in the density of dendritic spines and the frequency of medium-sized spines in the NAcc. In contrast, Paired rats previously exposed to VTA amphetamine showed neither conditioned locomotion nor conditioned c-Fos+ expression. Together, these results suggest a role for c-Fos+ neurons in the medial NAcc and rapid changes in the morphology of their dendritic spines in the expression of conditioning evoked by amphetamine-paired contextual stimuli.


Assuntos
Anfetamina/administração & dosagem , Sinais (Psicologia) , Espinhas Dendríticas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Condicionamento Clássico/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
18.
Cancer Res ; 75(18): 3958-3969, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26294213

RESUMO

Viral oncogene expression is insufficient for neoplastic transformation of human cells, so human papillomavirus (HPV)-associated cancers will also rely upon mutations in cellular oncogenes and tumor suppressors. However, it has been difficult so far to distinguish incidental mutations without phenotypic impact from causal mutations that drive the development of HPV-associated cancers. In this study, we addressed this issue by conducting a functional screen for genes that facilitate the formation of HPV E6/E7-induced squamous cell cancers in mice using a transposon-mediated insertional mutagenesis protocol. Overall, we identified 39 candidate driver genes, including Notch1, which unexpectedly was scored by gain- or loss-of-function mutations that were capable of promoting squamous cell carcinogenesis. Autochthonous HPV-positive oral tumors possessing an activated Notch1 allele exhibited high rates of cell proliferation and tumor growth. Conversely, Notch1 loss could accelerate the growth of invasive tumors in a manner associated with increased expression of matrix metalloproteinases and other proinvasive genes. HPV oncogenes clearly cooperated with loss of Notch1, insofar as its haploinsufficiency accelerated tumor growth only in HPV-positive tumors. In clinical specimens of various human cancers, there was a consistent pattern of NOTCH1 expression that correlated with invasive character, in support of our observations in mice. Although Notch1 acts as a tumor suppressor in mouse skin, we found that oncogenes enabling any perturbation in Notch1 expression promoted tumor growth, albeit via distinct pathways. Our findings suggest caution in interpreting the meaning of putative driver gene mutations in cancer, and therefore therapeutic efforts to target them, given the significant contextual differences in which such mutations may arise, including in virus-associated tumors.


Assuntos
Transformação Celular Neoplásica , Transformação Celular Viral , Cocarcinogênese , Neoplasias Bucais/genética , Oncogenes , Papillomaviridae/patogenicidade , Receptor Notch1/fisiologia , Infecções Tumorais por Vírus/fisiopatologia , 4-Nitroquinolina-1-Óxido/toxicidade , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/virologia , Carcinógenos , Carcinoma Verrucoso/patologia , Carcinoma Verrucoso/virologia , Elementos de DNA Transponíveis , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Bucais/virologia , Mutagênese Insercional , Invasividade Neoplásica , Papiloma/induzido quimicamente , Papiloma/patologia , Papiloma/virologia , Receptor Notch1/deficiência , Receptor Notch1/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Organismos Livres de Patógenos Específicos , Tamoxifeno/farmacologia , Acetato de Tetradecanoilforbol/toxicidade , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
19.
Metabolism ; 52(5): 528-34, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12759879

RESUMO

Genetic variation in the gene for a cytosolic cysteine protease, calpain-10, increases the susceptibility to type 2 diabetes apparently by altering levels of gene expression. In view of the importance of altered beta-cell function in the pathophysiology of type 2 diabetes, the present study was undertaken to define the effects on insulin secretion of exposing pancreatic islets to calpain inhibitors for 48 hours. Exposure of mouse islets to calpain inhibitors (ALLN, ALLM, E-64-d, MDL 18270, and PD147631) of different structure and mechanism of action for 48 hours reversibly suppresses glucose-induced insulin secretion by 40% to 80%. Exposure of islets to inhibitors of other proteases, ie, cathepsin B and proteasome, did not affect insulin secretion. The 48-hour incubation with calpain inhibitors also attenuates insulin secretory responses to the mitochondrial fuel alpha-ketoisocaproate (KIC). The same incubation also suppresses glucose metabolism and intracellular calcium ([Ca(2+)](i)) responses to glucose or KIC in islets. In summary, long-term inhibition of islet calpain activity attenuates insulin secretion possibly by limiting the rate of glucose metabolism. A reduction of calpain activity in islet could contribute to the development of beta-cell failure in type 2 diabetes thereby providing a link between genetic susceptibility to diabetes and the pathophysiologic manifestations of the disease.


Assuntos
Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Ilhotas Pancreáticas/metabolismo , Leucina/análogos & derivados , Mitocôndrias/metabolismo , Animais , Cálcio/metabolismo , Separação Celular , Dipeptídeos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , NADP/metabolismo , Oxirredução
20.
Mol Neurodegener ; 9: 1, 2014 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24386896

RESUMO

BACKGROUND: BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to pathogenesis in AD. However, only limited information is available on BACE1 axonal transport and targeting. RESULTS: By visualizing BACE1-YFP dynamics using live imaging, we demonstrate that BACE1 undergoes bi-directional transport in dynamic tubulo-vesicular carriers along axons in cultured hippocampal neurons and in acute hippocampal slices of transgenic mice. In addition, a subset of BACE1 is present in larger stationary structures, which are active presynaptic sites. In cultured neurons, BACE1-YFP is preferentially targeted to axons over time, consistent with predominant in vivo localization of BACE1 in presynaptic terminals. Confocal analysis and dual-color live imaging revealed a localization and dynamic transport of BACE1 along dendrites and axons in Rab11-positive recycling endosomes. Impairment of Rab11 function leads to a diminution of total and endocytosed BACE1 in axons, concomitant with an increase in the soma. Together, these results suggest that BACE1 is sorted to axons in endosomes in a Rab11-dependent manner. CONCLUSION: Our results reveal novel information on dynamic BACE1 transport in neurons, and demonstrate that Rab11-GTPase function is critical for axonal sorting of BACE1. Thus, we suggest that BACE1 transcytosis in endosomes contributes to presynaptic BACE1 localization.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transporte Axonal/fisiologia , Axônios/metabolismo , Hipocampo/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Endossomos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA