Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 282(1816): 20151485, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26423841

RESUMO

Actinopterygians (ray-finned fishes) are the most diverse living osteichthyan (bony vertebrate) group, with a rich fossil record. However, details of their earliest history during the middle Palaeozoic (Devonian) 'Age of Fishes' remains sketchy. This stems from an uneven understanding of anatomy in early actinopterygians, with a few well-known species dominating perceptions of primitive conditions. Here we present an exceptionally preserved ray-finned fish from the Late Devonian (Middle Frasnian, ca 373 Ma) of Pas-de-Calais, northern France. This new genus is represented by a single, three-dimensionally preserved skull. CT scanning reveals the presence of an almost complete braincase along with near-fully articulated mandibular, hyoid and gill arches. The neurocranium differs from the coeval Mimipiscis in displaying a short aortic canal with a distinct posterior notch, long grooves for the lateral dorsal aortae, large vestibular fontanelles and a broad postorbital process. Identification of similar but previously unrecognized features in other Devonian actinopterygians suggests that aspects of braincase anatomy in Mimipiscis are apomorphic, questioning its ubiquity as stand-in for generalized actinopterygian conditions. However, the gill skeleton of the new form broadly corresponds to that of Mimipiscis, and adds to an emerging picture of primitive branchial architecture in crown gnathostomes. The new genus is recovered in a polytomy with Mimiidae and a subset of Devonian and stratigraphically younger actinopterygians, with no support found for a monophyletic grouping of Moythomasia with Mimiidae.


Assuntos
Peixes/anatomia & histologia , Fósseis/anatomia & histologia , Crânio/anatomia & histologia , Animais , França , Filogenia
2.
Nature ; 427(6973): 412-3, 2004 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-14749820

RESUMO

Several discoveries of Late Devonian tetrapods (limbed vertebrates) have been made during the past two decades, but each has been confined to one locality. Here we describe a tetrapod jaw of about 365 million years (Myr) old from the Famennian of Belgium, which is the first from western continental Europe. The jaw closely resembles that of Ichthyostega, a Famennian tetrapod hitherto known only from Greenland. The environment of this fossil provides information about the conditions that prevailed just before the virtual disappearance of tetrapods from the fossil record for 20 Myr.


Assuntos
Fósseis , Arcada Osseodentária/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Bélgica , Geografia , Groenlândia , Fatores de Tempo
3.
PLoS One ; 6(7): e22136, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779385

RESUMO

Tetrapod fossil tracks are known from the Middle Devonian (Eifelian at ca. 397 million years ago--MYA), and their earliest bony remains from the Upper Devonian (Frasnian at 375-385 MYA). Tetrapods are now generally considered to have colonized land during the Carboniferous (i.e., after 359 MYA), which is considered to be one of the major events in the history of life. Our analysis on tetrapod evolution was performed using molecular data consisting of 13 proteins from 17 species and different paleontological data. The analysis on the molecular data was performed with the program TreeSAAP and the results were analyzed to see if they had implications on the paleontological data collected. The results have shown that tetrapods evolved from marine environments during times of higher oxygen levels. The change in environmental conditions played a major role in their evolution. According to our analysis this evolution occurred at about 397-416 MYA during the Early Devonian unlike previously thought. This idea is supported by various environmental factors such as sea levels and oxygen rate, and biotic factors such as biodiversity of arthropods and coral reefs. The molecular data also strongly supports lungfish as tetrapod's closest living relative.


Assuntos
Evolução Biológica , Fósseis , Animais , Biodiversidade , Genoma Mitocondrial/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA