Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Am Chem Soc ; 146(27): 18626-18638, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918178

RESUMO

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.


Assuntos
Cianobactérias , Cianobactérias/metabolismo , Cianobactérias/química , Cianobactérias/genética , Humanos , Família Multigênica , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
2.
J Nat Prod ; 81(1): 203-210, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29323895

RESUMO

A computer-assisted structural elucidation (CASE-3D) strategy based on the use of isotropic and/or anisotropic NMR data is proposed to elucidate relative configuration and preferred conformation in complex natural products. The methodology involves the selection of conformational models through the use of the Akaike Information Criterion and scoring of the different configurations. As illustrative examples, the methodology furnished the correct configuration of the already known compounds artemisinin (1) and homodimericin A (2). Revised structures (5 and 6), including their absolute configuration, for the recently reported curcusones I (3) and J (4) are proposed.


Assuntos
Produtos Biológicos/química , Anisotropia , Artemisininas/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Estereoisomerismo
3.
J Nat Prod ; 76(1): 113-6, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23289877

RESUMO

The elucidated structure of asperjinone (1), a natural product isolated from thermophilic Aspergillus terreus, was revised using the expert system Structure Elucidator. The reliability of the revised structure (2) was confirmed using 180 structures containing the (3,3-dimethyloxiran-2-yl)methyl fragment (3) as a basis for comparison and whose chemical shifts contradict the suggested structure (1).


Assuntos
Aspergillus/química , Produtos Biológicos/química , Lignanas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Reprodutibilidade dos Testes
4.
Magn Reson Chem ; 51(5): 299-307, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23483673

RESUMO

Unsymmetrical and generalized indirect covariance processing methods provide a means of mathematically combining pairs of 2D NMR spectra that share a common frequency domain to facilitate the extraction of correlation information. Previous reports have focused on the combination of HSQC spectra with 1,1-, 1,n-, and inverted (1)J(CC) 1,n-ADEQUATE spectra to afford carbon-carbon correlation spectra that allow the extraction of direct ((1)J(CC)), long-range ((n)J(CC), where n ≥ 2), and (1)J(CC)-edited long-range correlation data, respectively. Covariance processing of HMBC and 1,1-ADEQUATE spectra has also recently been reported, allowing convenient, high-sensitivity access to (n)J(CC) correlation data equivalent to the much lower sensitivity n,1-ADEQUATE experiment. Furthermore, HMBC-1,1-ADEQUATE correlations are observed in the F1 frequency domain at the intrinsic chemical shift of the (13)C resonance in question rather than at the double-quantum frequency of the pair of correlated carbons, as visualized by the n,1, and m,n-ADEQUATE experiments, greatly simplifying data interpretation. In an extension of previous work, the covariance processing of HMBC and 1,n-ADEQUATE spectra is now reported. The resulting HMBC-1,n-ADEQUATE spectrum affords long-range carbon-carbon correlation data equivalent to the very low sensitivity m,n-ADEQUATE experiment. In addition to the significantly higher sensitivity of the covariance calculated spectrum, correlations in the HMBC-1,n-ADEQUATE spectrum are again detected at the intrinsic (13)C chemical shifts of the correlated carbons rather than at the double-quantum frequency of the pair of correlated carbons. HMBC-1,n-ADEQUATE spectra can provide correlations ranging from diagonal ((0)J(CC) or diagonal correlations) to (4)J(CC) under normal circumstances to as much as (6)J(CC) in rare instances. The experiment affords the potential means of establishing the structures of severely proton-deficient molecules.


Assuntos
Espectroscopia de Ressonância Magnética/normas , Estricnina/química , Conformação Molecular , Padrões de Referência
5.
Magn Reson Chem ; 50(1): 22-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22259196

RESUMO

Structure elucidation using 2D NMR data and application of traditional methods of structure elucidation are known to fail for certain problems. In this work, it is shown that computer-assisted structure elucidation methods are capable of solving such problems. We conclude that it is now impossible to evaluate the capabilities of novel NMR experimental techniques in isolation from expert systems developed for processing fuzzy, incomplete and contradictory information obtained from 2D NMR spectra.

6.
Magn Reson Chem ; 50(11): 722-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22996413

RESUMO

Establishing the carbon skeleton of a molecule greatly facilitates the process of structure elucidation, leaving only heteroatoms to be inserted, heterocyclic rings to be closed, and stereochemical features to be defined. INADEQUATE, and more recently PANACEA, have been the only means of coming close to the goal of totally defining the carbon skeleton of a molecule. Unfortunately, the extremely low sensitivity and prodigious sample requirements of these experiments and the multiple receiver requirement for the latter experiment have severely restricted the usage of these experiments. Proton-detected ADEQUATE experiments, in contrast, have considerably higher sensitivity and more modest sample requirements. By combining experiments such as 1,1-ADEQUATE and 1,n-ADEQUATE with higher sensitivity experiments such as GHSQC through covariance processing, sample requirements can be further reduced with a commensurate improvement in the s/n ratio and F(1) resolution of the covariance processed spectrum. We now wish to report the covariance processing of an inverted (1)J(CC) 1,n-ADEQUATE experiment with a non-edited GHSQC spectrum to afford a spectrum that can trace the carbon skeleton of a molecule with the exception of correlations between quaternary carbons.


Assuntos
Carbono/química , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Padrões de Referência
7.
Magn Reson Chem ; 50(10): 691-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22930548

RESUMO

1,1-ADEQUATE and the related long-range 1,n- and n,1-ADEQUATE variants were developed to provide an unequivocal means of establishing (2)J(CH) and the equivalent of (n)J(CH) correlations where n = 3,4. Whereas the 1,1- and 1,n-ADEQUATE experiments have two simultaneous evolution periods that refocus the chemical shift and afford net single quantum evolution for the carbon spins, the n,1-variant has a single evolution period that leaves the carbon spin to be observed at the double quantum frequency. The n,1-ADEQUATE experiment begins with an HMBC-type (n)J(CH) magnetization transfer, which leads to inherently lower sensitivity than the 1,1- and 1,n-ADEQUATE experiments that begin with a (1)J(CH) transfer. These attributes, in tandem, serve to render the n,1-ADEQUATE experiment less generally applicable and more difficult to interpret than the 1,n-ADEQUATE experiment, which can in principle afford the same structural information. Unsymmetrical and generalized indirect covariance processing methods can complement and enhance the structural information encoded in combinations of experiments e.g. HSQC-1,1- or -1,n-ADEQUATE. Another benefit is that covariance processing methods offer the possibility of mathematically combining a higher sensitivity 2D NMR spectrum with for example 1,1- or 1,n-ADEQUATE to improve access to the information content of lower sensitivity congeners. The covariance spectrum also provides a significant enhancement in the F(1) digital resolution. The combination of HMBC and 1,1-ADEQUATE spectra is shown here using strychnine as a model compound to derive structural information inherent to an n,1-ADEQUATE spectrum with higher sensitivity and in a more convenient to interpret single quantum presentation.


Assuntos
Teoria Quântica , Estricnina/química , Artefatos , Estrutura Molecular
8.
J Nat Prod ; 74(11): 2400-7, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22054075

RESUMO

1H-13C GHSQC and GHMBC spectra are irrefutably among the most valuable 2D NMR experiments for the establishment of unknown chemical structures. However, the indeterminate nature of the length of the long-range coupling(s) observed via the (n)J(CH)-optimized delay of the GHMBC experiment can complicate the interpretation of the data when dealing with novel chemical structures. A priori there is no way to differentiate 2J(CH) from (n)J(CH) correlations, where n ≥ 3. Access to high-field spectrometers with cryogenic NMR probes brings 1,1- and 1,n-ADEQUATE experiments into range for modest samples. Subjecting ADEQUATE spectra to covariance processing with high sensitivity experiments such as multiplicity-edited GHSQC affords a diagonally symmetric 13C-13C correlation spectrum in which correlation data are observed with the apparent sensitivity of the GHSQC spectrum. HSQC-1,1-ADEQUATE covariance spectra derived by co-processing of GHSQC and 1,1-ADEQUATE spectra allow the carbon skeleton of molecules to be conveniently traced. HSQC-1,n-ADEQUATE spectra provide enhanced access to correlations equivalent to 4J(CH) correlations in a GHMBC spectrum. When these data are used to supplement GHMBC data, a powerfully synergistic set of heteronuclear correlations are available. The methods discussed are illustrated using retrorsine (1) as a model compound.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Alcaloides de Pirrolizidina/química , Isótopos de Carbono/química , Modelos Moleculares , Estrutura Molecular
9.
Magn Reson Chem ; 49(5): 248-52, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21400588

RESUMO

Various experimental methods have been developed to unequivocally identify vicinal neighbor carbon atoms. Variants of the HMBC experiment intended for this purpose have included 2J3J-HMBC and H2BC. The 1,1-ADEQUATE experiment, in contrast, was developed to accomplish the same goal but relies on the (1) J(CC) coupling between a proton-carbon resonant pair and the adjacent neighbor carbon. Hence, 1,1-ADEQUATE can identify non-protonated adjacent neighbor carbons, whereas the 2J3J-HMBC and H2BC experiments require both neighbor carbons to be protonated to operate. Since 1,1-ADEQUATE data are normally interpreted with close reference to an HSQC spectrum of the molecule in question, we were interested in exploring the unsymmetrical indirect covariance processing of multiplicity-edited GHSQC and 1,1-ADEQUATE spectra to afford an HSQC-ADEQUATE correlation spectrum that facilitates the extraction of carbon-carbon connectivity information. The HSQC-ADEQUATE spectrum of strychnine is shown and the means by which the carbon skeleton can be conveniently traced is discussed.


Assuntos
Isótopos de Carbono/análise , Prótons , Análise Espectral/métodos , Análise de Variância , Isótopos de Carbono/química , Modelos Moleculares , Conformação Molecular , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Teoria Quântica , Projetos de Pesquisa , Estricnina/análise , Estricnina/química
10.
Magn Reson Chem ; 49(6): 350-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21452353

RESUMO

Utilizing (13)C-(13)C connectivity networks for the assembly of carbon skeletons from HSQC-ADEQUATE spectra was recently reported. HSQC-ADEQUATE data retain the resonance multiplicity information of the multiplicity-edited GHSQC spectrum and afford a significant improvement in the signal-to-noise (s/n) ratio relative to the 1,1-ADEQUATE data used in the calculation of the HSQC-ADEQUATE spectrum by unsymmetrical indirect covariance (UIC) processing methods. The initial investigation into the computation of HSQC-ADEQUATE correlation plots utilized overnight acquisition of the 1,1-ADEQUATE data used for the calculation. In this communication, we report the results of an investigation of the reduction in acquisition time for the 1,1-ADEQUATE data to take advantage of the s/n gain during the UIC processing to afford the final HSQC-ADEQUATE correlation plot. Data acquisition times for the 1,1-ADEQUATE spectrum can be reduced to as little as a few hours, while retaining excellent s/n ratios and all responses contained in spectra computed from overnight data acquisitions. Concatenation of multiplicity-edited GHSQC and 1,1-ADEQUATE data also allows the interrogation of submilligram samples with 1,1-ADEQUATE data when using spectrometers equipped with 1.7-mm Micro CryoProbes ™.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Estricnina/química , Isótopos de Carbono , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Padrões de Referência
11.
Magn Reson Chem ; 49(10): 641-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21915897

RESUMO

Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Estricnina/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
12.
Magn Reson Chem ; 48(3): 219-29, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20108257

RESUMO

The accuracy of (13)C chemical shift prediction by both DFT GIAO quantum-mechanical (QM) and empirical methods was compared using 205 structures for which experimental and QM-calculated chemical shifts were published in the literature. For these structures, (13)C chemical shifts were calculated using HOSE code and neural network (NN) algorithms developed within our laboratory. In total, 2531 chemical shifts were analyzed and statistically processed. It has been shown that, in general, QM methods are capable of providing similar but inferior accuracy to the empirical approaches, but quite frequently they give larger mean average error values. For the structural set examined in this work, the following mean absolute errors (MAEs) were found: MAE(HOSE) = 1.58 ppm, MAE(NN) = 1.91 ppm and MAE(QM) = 3.29 ppm. A strategy of combined application of both the empirical and DFT GIAO approaches is suggested. The strategy could provide a synergistic effect if the advantages intrinsic to each method are exploited.


Assuntos
Simulação por Computador , Pesquisa Empírica , Modelos Químicos , Teoria Quântica , Isótopos de Carbono , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
13.
Magn Reson Chem ; 48(8): 571-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20623721

RESUMO

The availability of cryogenically cooled probes permits routine acquisition of data from low sensitivity pulse sequences such as inadequate and 1,1-adequate. We demonstrate that the use of cryo-probe generated 1,1-adequate data in conjunction with HMBC dramatically improves computer-assisted structure elucidation (CASE) both in terms of speed and accuracy of structure generation. In this study data were obtained on two dissimilar natural products and subjected to CASE analysis with and without the incorporation of two-bond specific data. Dramatic improvements in both structure calculation times and structure candidates were observed by the inclusion of the two-bond specific data.

14.
Chem Sci ; 11(44): 12081-12088, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094423

RESUMO

Structural features of proton-deficient heteroaromatic natural products, such as the breitfussins, can severely complicate their characterization by NMR spectroscopy. For the breitfussins in particular, the constitution of the five-membered oxazole central ring cannot be unequivocally established via conventional NMR methods when the 4'-position is halogenated. The level of difficulty is exacerbated by 4'-iodination, as the accuracy with which theoretical NMR parameters are determined relies extensively on computational treatment of the relativistic effects of the iodine atom. It is demonstrated in the present study, that the structure of a 4'-iodo breitfussin analog can be unequivocally established by anisotropic NMR methods, by adopting a reduced singular value decomposition (SVD) protocol that leverages the planar structures exhibited by its conformers.

15.
Magn Reson Chem ; 47(5): 371-89, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19197914

RESUMO

During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum-mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time-consuming QM calculations can then be applied, if necessary, to one or more of the 'best' structures to confirm the suggested solution.

16.
Magn Reson Chem ; 47(4): 333-41, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19206140

RESUMO

The reliable determination of stereocenters contained within chemical structures usually requires utilization of NMR data, chemical derivatization, molecular modeling, quantum-mechanical (QM) calculations and, if available, X-ray analysis. In this article, we show that the number of stereoisomers which need to be thoroughly verified, can be significantly reduced by the application of NMR chemical shift calculation to the full stereoisomer set of possibilities using a fragmental approach based on HOSE codes. The applicability of this suggested method is illustrated using experimental data published for a series of complex chemical structures.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Alcaloides/química , Isótopos de Carbono , Simulação por Computador , Bases de Dados Factuais , Diterpenos/química , Modelos Químicos , Conformação Molecular , Padrões de Referência , Sesquiterpenos/química , Estereoisomerismo , Esteroides/química , Terpenos/química
17.
Magn Reson Chem ; 46(2): 138-43, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18098170

RESUMO

Several groups of authors have reported studies in the areas of indirect and unsymmetrical indirect covariance NMR processing methods. Efforts have recently focused on the use of unsymmetrical indirect covariance processing methods to combine various discrete two-dimensional NMR spectra to afford the equivalent of the much less sensitive hyphenated 2D NMR experiments, for example indirect covariance (icv)-heteronuclear single quantum coherence (HSQC)-COSY and icv-HSQC-nuclear Overhauser effect spectroscopy (NOESY). Alternatively, unsymmetrical indirect covariance processing methods can be used to combine multiple heteronuclear 2D spectra to afford icv-13C-15N HSQC-HMBC correlation spectra. We now report the use of responses contained in indirect covariance processed HSQC spectra as a means for the identification of artifacts in both indirect covariance and unsymmetrical indirect covariance processed 2D NMR spectra.


Assuntos
Artefatos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Isótopos de Carbono , Estrutura Molecular , Isótopos de Nitrogênio , Sensibilidade e Especificidade , Software , Estereoisomerismo
18.
Magn Reson Chem ; 46(11): 997-1002, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18800341

RESUMO

Long-range homonuclear coupling pathways can be observed in COSY or GCOSY spectra by the acquisition of spectra with larger numbers of increments of the evolution period, t(1), than would normally be used. Alternatively, covariance processing of COSY-type spectra acquired with modest numbers of t(1) increments, allows the observation of multistage correlations. In this work results obtained from covariance-processed GCOSY spectra are fully analyzed and compared to normally processed COSY and 80 ms TOCSY spectra. Multistage or 'RCOSY-type' correlations are observed when remote protons both exhibit correlations to the same coupling partner e.g. A --> B and B --> C gives rise to an A --> C correlation. In the strict sense, RCOSY-type responses are artifacts albeit providing useful information. Nonbeneficial artifact correlations are observed when protons couple to other protons that overlap or partially overlap. The origin of artifact responses is also analyzed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Artefatos , Espectroscopia de Ressonância Magnética/normas , Processamento de Sinais Assistido por Computador
19.
Chem Sci ; 9(2): 307-314, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29619201

RESUMO

Ambiguities and errors in the structural assignment of organic molecules hinder both drug discovery and total synthesis efforts. Newly described NMR experimental approaches can provide valuable structural details and a complementary means of structure verification. The caulamidines are trihalogenated alkaloids from a marine bryozoan with an unprecedented structural scaffold. Their unique carbon and nitrogen framework was deduced by conventional NMR methods supplemented by new experiments that define 2-bond heteronuclear connectivities, reveal very long-range connectivity data, or visualize the 35,37Cl isotopic effect on chlorinated carbons. Computer-assisted structural elucidation (CASE) analysis of the spectroscopic data for caulamidine A provided only one viable structural alternative. Anisotropic NMR parameters, specifically residual dipolar coupling and residual chemical shift anisotropy data, were measured for caulamidine A and compared to DFT-calculated values for the proposed structure, the CASE-derived alternative structure, and two energetically feasible stereoisomers. Anisotropy-based NMR experiments provide a global, orthogonal means to verify complex structures free from investigator bias. The anisotropic NMR data were fully consistent with the assigned structure and configuration of caulamidine A. Caulamidine B has the same heterocyclic scaffold as A but a different composition and pattern of halogen substitution. Caulamidines A and B inhibited both wild-type and drug-resistant strains of the malaria parasite Plasmodium falciparum at low micromolar concentrations, yet were nontoxic to human cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA