Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2203228120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580593

RESUMO

Understanding the causes and limits of population divergence in phenotypic traits is a fundamental aim of evolutionary biology, with the potential to yield predictions of adaptation to environmental change. Reciprocal transplant experiments and the evaluation of optimality models suggest that local adaptation is common but not universal, and some studies suggest that trait divergence is highly constrained by genetic variances and covariances of complex phenotypes. We analyze a large database of population divergence in plants and evaluate whether evolutionary divergence scales positively with standing genetic variation within populations (evolvability), as expected if genetic constraints are evolutionarily important. We further evaluate differences in divergence and evolvability-divergence relationships between reproductive and vegetative traits and between selfing, mixed-mating, and outcrossing species, as these factors are expected to influence both patterns of selection and evolutionary potentials. Evolutionary divergence scaled positively with evolvability. Furthermore, trait divergence was greater for vegetative traits than for floral (reproductive) traits, but largely independent of the mating system. Jointly, these factors explained ~40% of the variance in evolutionary divergence. The consistency of the evolvability-divergence relationships across diverse species suggests substantial predictability of trait divergence. The results are also consistent with genetic constraints playing a role in evolutionary divergence.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Reprodução , Fenótipo , Aclimatação , Plantas/genética , Variação Genética , Flores/genética
2.
Proc Natl Acad Sci U S A ; 119(44): e2207634119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279467

RESUMO

Understanding the potential of natural populations to adapt to altered environments is becoming increasingly relevant in evolutionary research. Currently, our understanding of adaptation to human alteration of the environment is hampered by lack of knowledge on the genetic basis of traits, lack of time series, and little or no information on changes in optimal trait values. Here, we used time series data spanning nearly a century to investigate how the body mass of Atlantic salmon (Salmo salar) adapts to river regulation. We found that the change in body mass followed the change in waterflow, both decreasing to ∼1/3 of their original values. Allele frequency changes at two loci in the regions of vgll3 and six6 predicted more than 80% of the observed body mass reduction. Modeling the adaptive dynamics revealed that the population mean lagged behind its optimum before catching up approximately six salmon generations after the initial waterflow reduction. Our results demonstrate rapid adaptation mediated by large-effect loci and provide insight into the temporal dynamics of evolutionary rescue following human disturbance.


Assuntos
Salmo salar , Animais , Adaptação Fisiológica/genética , Tamanho Corporal/genética , Frequência do Gene , Rios , Salmo salar/genética
3.
Mol Ecol ; 33(3): e17229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063470

RESUMO

Evolution of phenotypic plasticity requires genotype-environment interaction. The discovery of two large-effect loci in the vgll3 and six6 genomic regions associated with the number of years the Atlantic salmon spend feeding at sea before maturation (sea age), provides a unique opportunity to study evolutionary potential of phenotypic plasticity. Using data on 1246 Atlantic salmon caught in the River Surna in Norway, we show that variation in mean sea age among years (smolt cohorts 2013-2018) is influenced by genotype frequencies as well as interaction effects between genotype and year. Genotype-year interactions suggest that genotypes may differ in their response to environmental variation across years, implying genetic variation in phenotypic plasticity. Our results also imply that plasticity in sea age will evolve as an indirect response to selection on mean sea age due to a shared genetic basis. Furthermore, we demonstrate differences between years in the additive and dominance functional genetic effects of vgll3 and six6 on sea age, suggesting that evolutionary responses will vary across environments. Considering the importance of age at maturity for survival and reproduction, genotype-environment interactions likely play an important role in local adaptation and population demography in Atlantic salmon.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Genótipo , Reprodução/genética , Genoma , Adaptação Fisiológica , Fatores de Transcrição
4.
Syst Biol ; 71(5): 1054-1072, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34865153

RESUMO

Understanding variation in rates of evolution and morphological disparity is a goal of macroevolutionary research. In a phylogenetic comparative methods framework, we present three explicit models for linking the rate of evolution of a trait to the state of another evolving trait. This allows testing hypotheses about causal influences on rates of phenotypic evolution with phylogenetic comparative data. We develop a statistical framework for fitting the models with generalized least-squares regression and use this to discuss issues and limitations in the study of rates of evolution more generally. We show that the power to detect effects on rates of evolution is low in that even strong causal effects are unlikely to explain more than a few percent of observed variance in disparity. We illustrate the models and issues by testing if rates of beak-shape evolution in birds are influenced by brain size, as may be predicted from a Baldwin effect in which presumptively more behaviorally flexible large-brained species generate more novel selection on themselves leading to higher rates of evolution. From an analysis of morphometric data for 645 species, we find evidence that both macro- and microevolution of the beak are faster in birds with larger brains, but with the caveat that there are no consistent effects of relative brain size.[Baldwin effect; beak shape; behavioral drive; bird; brain size; disparity; phylogenetic comparative method; rate of evolution.].


Assuntos
Bico , Evolução Biológica , Animais , Bico/anatomia & histologia , Aves , Fenótipo , Filogenia
5.
Nature ; 548(7668): 447-450, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28792935

RESUMO

Mutation enables evolution, but the idea that adaptation is also shaped by mutational variation is controversial. Simple evolutionary hypotheses predict such a relationship if the supply of mutations constrains evolution, but it is not clear that constraints exist, and, even if they do, they may be overcome by long-term natural selection. Quantification of the relationship between mutation and phenotypic divergence among species will help to resolve these issues. Here we use precise data on over 50,000 Drosophilid fly wings to demonstrate unexpectedly strong positive relationships between variation produced by mutation, standing genetic variation, and the rate of evolution over the last 40 million years. Our results are inconsistent with simple constraint hypotheses because the rate of evolution is very low relative to what both mutational and standing variation could allow. In principle, the constraint hypothesis could be rescued if the vast majority of mutations are so deleterious that they cannot contribute to evolution, but this also requires the implausible assumption that deleterious mutations have the same pattern of effects as potentially advantageous ones. Our evidence for a strong relationship between mutation and divergence in a slowly evolving structure challenges the existing models of mutation in evolution.


Assuntos
Evolução Biológica , Dípteros/anatomia & histologia , Dípteros/genética , Modelos Genéticos , Mutação , Asas de Animais/anatomia & histologia , Animais , Drosophila/anatomia & histologia , Drosophila/genética , Feminino , Masculino , Tamanho do Órgão , Fenótipo , Filogenia , Seleção Genética , Caracteres Sexuais
6.
Heredity (Edinb) ; 129(6): 356-365, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357776

RESUMO

Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work using sequencing data to characterize genetic variation underlying phenotypes in wild populations.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Fenótipo
7.
Nature ; 528(7582): 405-8, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26536110

RESUMO

Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.


Assuntos
Envelhecimento/genética , Tamanho Corporal/genética , Proteínas de Peixes/genética , Variação Genética/genética , Crescimento/genética , Salmo salar/genética , Caracteres Sexuais , Animais , Evolução Biológica , Feminino , Proteínas de Peixes/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Masculino , Modelos Biológicos , Fenótipo , Reprodução/genética , Reprodução/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(45): 11561-11566, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30282740

RESUMO

In polyandrous species, fathers benefit from attracting greater maternal investment toward their offspring at the expense of the offspring of other males, while mothers should usually allocate resources equally among offspring. This conflict can lead to an evolutionary arms race between the sexes, manifested through antagonistic genes whose expression in offspring depends upon the parent of origin. The arms race may involve an increase in the strength of maternally versus paternally derived alleles engaged in a "tug of war" over maternal provisioning or repeated "recognition-avoidance" coevolution where growth-enhancing paternally derived alleles evolve to escape recognition by maternal genes targeted to suppress their effect. Here, we develop predictions to distinguish between these two mechanisms when considering crosses among populations that have reached different equilibria in this intersexual arms race. We test these predictions using crosses within and among populations of Dalechampia scandens (Euphorbiaceae) that presumably have experienced different intensities of intersexual conflict, as inferred from their historical differences in mating system. In crosses where the paternal population was more outcrossed than the maternal population, hybrid seeds were larger than those normally produced in the maternal population, whereas when the maternal population was more outcrossed, hybrid seeds were smaller than normal. These results confirm the importance of mating systems in determining the intensity of intersexual conflict over maternal investment and provide strong support for a tug-of-war mechanism operating in this conflict. They also yield clear predictions for the fitness consequences of gene flow among populations with different mating histories.


Assuntos
Euphorbiaceae/genética , Fluxo Gênico , Padrões de Herança , Sementes/genética , Quimera , Cruzamentos Genéticos , Euphorbiaceae/anatomia & histologia , Aptidão Genética , Melhoramento Vegetal , Sementes/anatomia & histologia
9.
Proc Natl Acad Sci U S A ; 112(43): 13284-9, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26371319

RESUMO

Precise exponential scaling with size is a fundamental aspect of phenotypic variation. These allometric power laws are often invariant across taxa and have long been hypothesized to reflect developmental constraints. Here we test this hypothesis by investigating the evolutionary potential of an allometric scaling relationship in drosophilid wing shape that is nearly invariant across 111 species separated by at least 50 million years of evolution. In only 26 generations of artificial selection in a population of Drosophila melanogaster, we were able to drive the allometric slope to the outer range of those found among the 111 sampled species. This response was rapidly lost when selection was suspended. Only a small proportion of this reversal could be explained by breakup of linkage disequilibrium, and direct selection on wing shape is also unlikely to explain the reversal, because the more divergent wing shapes produced by selection on the allometric intercept did not revert. We hypothesize that the reversal was instead caused by internal selection arising from pleiotropic links to unknown traits. Our results also suggest that the observed selection response in the allometric slope was due to a component expressed late in larval development and that variation in earlier development did not respond to selection. Together, these results are consistent with a role for pleiotropic constraints in explaining the remarkable evolutionary stability of allometric scaling.


Assuntos
Evolução Biológica , Drosophila melanogaster/anatomia & histologia , Fenótipo , Seleção Genética , Asas de Animais/anatomia & histologia , Animais , Tamanho Corporal , Drosophila melanogaster/genética , Modelos Genéticos , Seleção Artificial , Asas de Animais/crescimento & desenvolvimento
10.
New Phytol ; 215(2): 906-917, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28556899

RESUMO

The goal of biological measurement is to capture underlying biological phenomena in numerical form. The reciprocity index applied to heterostylous flowers is meant to measure the degree of correspondence between fertile parts of opposite sex on complementary (inter-compatible) morphs, reflecting the correspondence of locations of pollen placement on, and stigma contact with, pollinators. Pollen of typical heterostylous flowers can achieve unimpeded fertilization only on opposite-morph flowers. Thus, the implicit goal of this measurement is to assess the likelihood of 'legitimate' pollinations between compatible morphs, and hence reproductive fitness. Previous reciprocity metrics fall short of this goal on both empirical and theoretical grounds. We propose a new measure of reciprocity based on theory that relates floral morphology to reproductive fitness. This method establishes a scale based on adaptive inaccuracy, a measure of the fitness cost of the deviation of phenotypes in a population from the optimal phenotype. Inaccuracy allows the estimation of independent contributions of maladaptive bias (mean departure from optimum) and imprecision (within-population variance) to the phenotypic mismatch (inaccuracy) of heterostylous morphs on a common scale. We illustrate this measure using data from three species of Primula (Primulaceae).


Assuntos
Flores/fisiologia , Primula/fisiologia , Adaptação Biológica , Flores/anatomia & histologia , Pólen/anatomia & histologia
11.
Am J Bot ; 103(3): 522-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26451034

RESUMO

PREMISE OF THE STUDY: Competition among pollen grains from a single donor is expected to increase the quality of the offspring produced because of the recessive deleterious alleles expressed during pollen-tube growth. However, evidence for such an effect is inconclusive; a large number of studies suffer from confounding variation in pollen competition with variation in pollen load. METHODS: In this study, we tested the effect of pollen competition on offspring performance independently of pollen-load variation. We compared seed mass and early seedling performance in Dalechampia scandens (Euphorbiaceae) between crosses in which variation in pollen competition was achieved, without variation in pollen load, by manipulating the dispersion of pollen grains on the stigmas. KEY RESULTS: Despite a large sample size (211 crosses on 20 maternal plants), we failed to find an effect of pollen competition on seed characteristics or early seedling performance. Paternal effects were always limited, and pollen competition never reduced the within-father (residual) variance. CONCLUSION: These results suggest that limited within-donor variation in genetic quality of pollen grains reduces the potential benefits of pollen competition in the study population. The lack of paternal effects on early sporophyte performance further suggests that benefits of pollen competition among pollen from multiple donors should be limited as well, and it raises questions about the significance of pollen competition as a mechanism of sexual selection.


Assuntos
Euphorbiaceae/fisiologia , Pólen/fisiologia , Evolução Biológica , Cotilédone/fisiologia , Germinação , Modelos Biológicos , Tamanho do Órgão , Sementes/fisiologia , Fatores de Tempo
12.
Evolution ; 78(5): 934-950, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38393696

RESUMO

Epistasis is often portrayed as unimportant in evolution. While random patterns of epistasis may have limited effects on the response to selection, systematic directional epistasis can have substantial effects on evolutionary dynamics. Directional epistasis occurs when allele substitutions that change a trait also modify the effects of allele substitution at other loci in a systematic direction. In this case, trait evolution may induce correlated changes in allelic effects and additive genetic variance (evolvability) that modify further evolution. Although theory thus suggests a potentially important role for directional epistasis in evolution, we still lack empirical evidence about its prevalence and magnitude. Using a new framework to estimate systematic patterns of epistasis from line-crosses experiments, we quantify its effects on 197 size-related traits from diverging natural populations in 24 animal and 17 plant species. We show that directional epistasis is common and tends to become stronger with increasing morphological divergence. In animals, most traits displayed negative directionality toward larger size, suggesting that epistatic constraints reducing evolvability toward larger size. Dominance was also common but did not systematically alter the effects of epistasis.


Assuntos
Epistasia Genética , Animais , Plantas/genética , Plantas/anatomia & histologia , Evolução Biológica , Tamanho Corporal
13.
Science ; 384(6696): 688-693, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723067

RESUMO

Heritable variation is a prerequisite for evolutionary change, but the relevance of genetic constraints on macroevolutionary timescales is debated. By using two datasets on fossil and contemporary taxa, we show that evolutionary divergence among populations, and to a lesser extent among species, increases with microevolutionary evolvability. We evaluate and reject several hypotheses to explain this relationship and propose that an effect of evolvability on population and species divergence can be explained by the influence of genetic constraints on the ability of populations to track rapid, stationary environmental fluctuations.


Assuntos
Evolução Biológica , Fósseis , Seleção Genética , Animais , Variação Genética , Conjuntos de Dados como Assunto
14.
Am Nat ; 181(2): 195-212, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23348774

RESUMO

Ontogenetic and static allometries describe how a character changes in size when the size of the organism changes during ontogeny and among individuals measured at the same developmental stage, respectively. Understanding the relationship between these two types of allometry is crucial to understanding the evolution of allometry and, more generally, the evolution of shape. However, the effects of ontogenetic allometry on static allometry remain largely unexplored. Here, we first show analytically how individual variation in ontogenetic allometry and body size affect static allometry. Using two longitudinal data sets on ontogenetic and static allometry, we then estimate variances and covariances for the different parameters of the ontogenetic allometry defined in our model and assess their relative contribution to the static allometric slope. The mean ontogenetic allometry is the main parameter that determines the static allometric slope, while the covariance between the ontogenetic allometric slope and body size generates most of the discrepancies between ontogenetic and static allometry. These results suggest that the apparent evolutionary stasis of the static allometric slope is not generated by internal (developmental) constraints but more likely results from external constraints imposed by selection.


Assuntos
Evolução Biológica , Tamanho Corporal/fisiologia , Crescimento e Desenvolvimento/fisiologia , Modelos Biológicos , Característica Quantitativa Herdável , Seleção Genética , Análise de Variância , Animais , Pesos e Medidas Corporais , Simulação por Computador , Camundongos , Poecilia/crescimento & desenvolvimento , Cauda/crescimento & desenvolvimento
15.
16.
Sci Adv ; 8(9): eabk2542, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245115

RESUMO

Ecological regime shifts are abrupt changes in the structure and function of ecosystems that persist over time, but evidence of contemporary regime shifts are rare. Historical scale data from 52,384 individual wild Atlantic salmon caught in 180 rivers from 1989 to 2017 reveal that growth of Atlantic salmon across the Northeast Atlantic Ocean abruptly decreased following the year 2004. At the same time, the proportion of early maturing Atlantic salmon decreased. These changes occurred after a marked decrease in the extent of Arctic water in the Norwegian Sea, a subsequent warming of spring water temperature before Atlantic salmon entering the sea, and an approximately 50% reduction of zooplankton across large geographic areas of the Northeast Atlantic Ocean. A sudden decrease in growth was also observed among Atlantic mackerel in the Norwegian Sea. Our results point toward an ecosystem-scale regime shift in the Northeast Atlantic Ocean.

17.
Evolution ; 75(9): 2217-2236, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34137027

RESUMO

Although artificial-selection experiments seem well suited to testing our ability to predict evolution, the correspondence between predicted and observed responses is often ambiguous due to the lack of uncertainty estimates. We present equations for assessing prediction error in direct and indirect responses to selection that integrate uncertainty in genetic parameters used for prediction and sampling effects during selection. Using these, we analyzed a selection experiment on floral traits replicated in two taxa of the Dalechampia scandens (Euphorbiaceae) species complex for which G-matrices were obtained from a diallel breeding design. After four episodes of bidirectional selection, direct and indirect responses remained within wide prediction intervals, but appeared different from the predictions. Combined analyses with structural-equation models confirmed that responses were asymmetrical and lower than predicted in both species. We show that genetic drift is likely to be a dominant source of uncertainty in typically-dimensioned selection experiments in plants and a major obstacle to predicting short-term evolutionary trajectories.


Assuntos
Euphorbiaceae , Seleção Genética , Evolução Biológica , Modelos Genéticos , Fenótipo
18.
Evolution ; 75(2): 294-309, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33230820

RESUMO

Spatiotemporal variation in natural selection is expected, but difficult to estimate. Pollinator-mediated selection on floral traits provides a good system for understanding and linking variation in selection to differences in ecological context. We studied pollinator-mediated selection in five populations of Dalechampia scandens (Euphorbiaceae) in Costa Rica and Mexico. Using a nonlinear path-analytical approach, we assessed several functional components of selection, and linked variation in pollinator-mediated selection across time and space to variation in pollinator assemblages. After correcting for estimation error, we detected moderate variation in net selection on two out of four blossom traits. Both the opportunity for selection and the mean strength of selection decreased with increasing reliability of cross-pollination. Selection for pollinator attraction was consistently positive and stronger on advertisement than reward traits. Selection on traits affecting pollen transfer from the pollinator to the stigmas was strong only when cross-pollination was unreliable and there was a mismatch between pollinator and blossom size. These results illustrate how consideration of trait function and ecological context can facilitate both the detection and the causal understanding of spatiotemporal variation in natural selection.


Assuntos
Euphorbiaceae/genética , Flores/fisiologia , Aptidão Genética , Polinização , Seleção Genética , Animais
19.
Sci Adv ; 7(52): eabj3397, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936452

RESUMO

After a half a century of salmon farming, we have yet to understand how the influx of genes from farmed escapees affects the full life history of Atlantic salmon (Salmo salar L.) in the wild. Using scale samples of over 6900 wild adult salmon from 105 rivers, we document that increased farmed genetic ancestry is associated with increased growth throughout life and a younger age at both seaward migration and sexual maturity. There was large among-population variation in the effects of introgression. Most saliently, the increased growth at sea following introgression declined with the population's average growth potential. Variation at two major-effect loci associated with age at maturity was little affected by farmed genetic ancestry and could not explain the observed phenotypic effects of introgression. Our study provides knowledge crucial for predicting the ecological and evolutionary consequences of increased aquaculture production worldwide.

20.
New Phytol ; 188(2): 370-84, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20807340

RESUMO

• Both floral rewards and advertisements can be important in the attraction of pollinators, but few studies have separated the individual contributions of rewards and advertisements to fitness. • Here, we investigated selection by pollinators on individual blossoms in Dalechampia schottii. This Neotropical vine, endemic to the Yucatán Peninsula, rewards bees by secreting fully visible, deep-blue resin from a gland subtended by two conspicuous petaloid bracts that may play the role of advertisement. • We used contextual analysis to build a fitness function for four morphological traits of individual blossoms: the amount of the reward as measured by gland area; the size of the advertisement trait as measured by bract length; the flower-pollinator fit as measured by the shortest distance between reward and stigma; and the potential for self-pollination as measured by the shortest distance between anthers and stigma. • Larger gland area and increased potential for self-pollination directly increased the seed production of individual blossoms. However, bract size or flower-pollinator fit did not influence the number of seeds produced by blossoms. Therefore, in this Dalechampia species, pollinators seem to select directly on the reward of individual blossoms but not on the advertising bracts.


Assuntos
Abelhas/fisiologia , Brassicaceae/fisiologia , Flores/fisiologia , Polinização/fisiologia , Seleção Genética , Animais , Brassicaceae/anatomia & histologia , Flores/anatomia & histologia , Pólen/fisiologia , Dinâmica Populacional , Característica Quantitativa Herdável , Recompensa , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA