Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 32(3): e2526, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34994033

RESUMO

Forest biodiversity conservation and species distribution modeling greatly benefit from broad-scale forest maps depicting tree species or forest types rather than just presence and absence of forest, or coarse classifications. Ideally, such maps would stem from satellite image classification based on abundant field data for both model training and accuracy assessments, but such field data do not exist in many parts of the globe. However, different forest types and tree species differ in their vegetation phenology, offering an opportunity to map and characterize forests based on the seasonal dynamic of vegetation indices and auxiliary data. Our goal was to map and characterize forests based on both land surface phenology and climate patterns, defined here as forest phenoclusters. We applied our methodology in Argentina (2.8 million km2 ), which has a wide variety of forests, from rainforests to cold-temperate forests. We calculated phenology measures after fitting a harmonic curve of the enhanced vegetation index (EVI) time series derived from 30-m Sentinel 2 and Landsat 8 data from 2018-2019. For climate, we calculated land surface temperature (LST) from Band 10 of the thermal infrared sensor (TIRS) of Landsat 8, and precipitation from Worldclim (BIO12). We performed stratified X-means cluster classifications followed by hierarchical clustering. The resulting clusters separated well into 54 forest phenoclusters with unique combinations of vegetation phenology and climate characteristics. The EVI 90th percentile was more important than our climate and other phenology measures in providing separability among different forest phenoclusters. Our results highlight the potential of combining remotely sensed phenology measures and climate data to improve broad-scale forest mapping for different management and conservation goals, capturing functional rather than structural or compositional characteristics between and within tree species. Our approach results in classifications that go beyond simple forest-nonforest in areas where the lack of detailed ecological field data precludes tree species-level classifications, yet conservation needs are high. Our map of forest phenoclusters is a valuable tool for the assessment of natural resources, and the management of the environment at scales relevant for conservation actions.


Assuntos
Florestas , Árvores , Argentina , Biodiversidade , Clima
2.
J Environ Manage ; 80(3): 266-78, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16490298

RESUMO

A linear engineering project--i.e. a pipeline--has a potential long- and short-term impact on the environment and on the inhabitants therein. We must find better, less expensive, and less time-consuming ways to obtain information on the environment and on any modifications resulting from anthropic activity. We need scientifically sound, rapid and affordable assessment and monitoring methods. Construction companies, industries and the regulating government organisms lack the resources needed to conduct long-term basic studies of the environment. Thus there is a need to make the necessary adjustments and improvements in the environmental data considered useful for this development project. More effective and less costly methods are generally needed. We characterized the landscape of the study area, situated in the center and north-east of Argentina. Little is known of the ecology of this region and substantial research is required in order to develop sustainable uses and, at the same time, to develop methods for reducing impacts, both primary and secondary, resulting from anthropic activity in this area. Furthermore, we made an assessment of the environmental impact of the planned linear project, applying an ad hoc impact index, and we analyzed the different alternatives for a corridor, each one of these involving different sections of the territory. Among the alternative corridors considered, this study locates the most suitable ones in accordance with a selection criterion based on different environmental and conservation aspects. We selected the corridor that we considered to be the most compatible--i.e. with the least potential environmental impact--for the possible construction and operation of the linear project. This information, along with suitable measures for mitigating possible impacts, should be the basis of an environmental management plan for the design process and location of the project. We pointed out the objectivity and efficiency of this methodological approach, along with the possibility of integrating the information in order to allow for the application thereof in this type of study.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Engenharia/métodos , Argentina , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Engenharia/economia , Geografia , Modelos Teóricos , Paraguai , Técnicas de Planejamento , Meios de Transporte/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA