Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446878

RESUMO

A simple kinetic model allowed for the description of the observed decay of the oxygen content in hypoxic aqueous samples with and without headspace, in the presence of glucose oxidase (Glucox) or laccase and their substrates (glucose for Glucox and ABTS for Laccase). The experimental tests involved both the direct measurement of the oxygen content with a fluorescence-based probe and the indirect stopped-flow spectroscopic detection of colored compounds generated from suitable chromogenic reagents. The complete depletion of dissolved oxygen occurred in the no-headspace samples, whereas some residual oxygen remained in a steady state in the samples with headspace. Simple pseudo-first-order kinetics was adequate to describe the behavior of the system, as long as oxygen was the rate-limiting compound, i.e., in the presence of excess substrates. The values of the kinetic constants drawn from best-fit routines of the data from both experimental approaches were quite comparable. The oxygen residues in the samples with headspace seemed related to the low solubility of O2 in the aqueous phase, especially if compared with the large amount of oxygen in the headspace. The extent of such residue decreased by increasing the concentration of the enzyme. The kinetic model proposed in this paper can be of help in assembling suitable sensors to be used for food safety and quality control.


Assuntos
Lacase , Oxigênio , Lacase/metabolismo , Oxirredução , Cinética , Análise Espectral , Água
2.
IUBMB Life ; 74(7): 723-732, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611886

RESUMO

This contribution focuses on the earliest steps of the assembly of FeS clusters and their insertion into acceptor apoproteins, that call for transient formation of a 2Fe2S cluster on a scaffold protein from sulfide and iron salts. For the sake of simplicity, this report is essentially limited to the Escherichia coli isc-encoded proteins and does not take into account agents that modulate the enzymatic synthesis of sulfide by protein in the same operon or the redox events associated with both sulfide generation and conversion of 2Fe2S structures in clusters of higher nuclearity. Therefore, the results discussed here are based on chemical reconstitution systems using inorganic sulfide, ferric salts, and excess thiols. This simplification offers the possibility to address some mechanistic issues related to the role of protein/protein interaction as for modulating: (a) the rate of cluster assembly on scaffold proteins; (b) the stability of the cluster on the scaffold protein; and (c) the rate of transfer to acceptor apoproteins as also influenced by the acceptor concentration. The emerging picture highlights the mechanistic versatility of the systems, that is discussed in terms of the capability of such an apparently simple combination of proteins to cope with various physiological situation. The hypothetical mechanism presented here may represent an additional way of modulating the rate and outcome of the overall process while avoiding potential toxicity issues.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Apoproteínas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Sais/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo
3.
Clin Exp Rheumatol ; 40(2): 237-246, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796850

RESUMO

OBJECTIVES: We performed a retrospective and prospective observational study to investigate whether the T lymphocyte activation antigen dipeptidyl peptidase 4 (DPP4)/CD26 is expressed in the skeletal muscle of patients with idiopathic inflammatory myopathies (IIM) and whether its expression offers clues to understand the events taking place in the tissue. METHODS: CD26 expression in the muscle, evaluated by immunofluorescence, was assessed in 32 patients with IIM and 5 healthy controls and compared among patients with dermatomyositis (DM), immune-mediated necrotising myopathy (IMNM), inclusion body myositis (IBM), and polymyositis (PM). The relationship of CD26 expression and localization with clinical, serological and histological features was determined. RESULTS: CD26 is selectively expressed in the skeletal muscle of patients with IIM. The highest levels of CD26 are found in the skeletal muscle from patients with DM and in particular in those characterized by tissue necrosis and vascular inflammation. CD26 expression is associated with decreased muscle performance and independently predicts the number of treatments before reaching disease stabilization or improvement (odds ratio, OR=1.2, p<0.05). CONCLUSIONS: CD26 is expressed in the IIM skeletal muscle and may represent a target of molecular intervention for patients with treatment-refractory myositis.


Assuntos
Dermatomiosite , Miosite de Corpos de Inclusão , Miosite , Dipeptidil Peptidase 4 , Humanos , Inflamação/patologia , Músculo Esquelético/patologia , Estudos Retrospectivos
4.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430831

RESUMO

Recent evidence links chronic consumption of large amounts of fructose (FRU) with several non-communicable disease. After ingestion, dietary FRU is absorbed into the intestinal tract by glucose transporter (GLUT) 5 and transported to the portal vein via GLUT2. GLUT2 is primarily localized on the basolateral membrane, but GLUT2 may be dislocated post-prandially from the basolateral membrane of intestinal cells to the apical one. Polyphenols (PP) are plant secondary metabolites that exert hypoglycemic properties by modulating intracellular insulin signaling pathways and by inhibiting intestinal enzymes and transporters. Post-prandially, PP may reach high concentrations in the gut lumen, making the inhibition of FRU absorption a prime target for exploring the effects of PP on FRU metabolism. Herein, we have systematically reviewed studies on the effect of PP and PP-rich products on FRU uptake and transport in intestinal cells. In spite of expectations, the very different experimental conditions in the various individual studies do not allow definitive conclusions to be drawn. Future investigations should rely on standardized conditions in order to obtain comparable results that allow a credible rating of polyphenols and polyphenol-rich products as inhibitors of fructose uptake.


Assuntos
Intestinos , Polifenóis , Polifenóis/farmacologia , Transporte Biológico , Publicações , Frutose
5.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164393

RESUMO

Bovine milk beta-lactoglobulin (BLG) is a small whey protein that is a common ingredient in many foods. Many of the properties of BLG relevant to the food industry are related to its unfolding processes induced by physical or chemical treatments. Unfolding occurs through a number of individual steps, generating transient intermediates through reversible and irreversible modifications. The rate of formation of these intermediates and of their further evolution into different structures often dictates the outcome of a given process. This report addresses the main structural features of the BLG unfolding intermediates under conditions that may facilitate or impair their formation in response to chemical or physical denaturing agents. In consideration of the short lifespan of the transient species generated upon unfolding, this review also discusses how various methodological approaches may be adapted in exploring the process-dependent structural modifications of BLG from a kinetic and/or a thermodynamic standpoint. Some of the conceptual and methodological approaches presented and discussed in this review can provide hints for improving the understanding of transient conformers formation by proteins present in other food systems, as well as when other physical or chemical denaturing agents are acting on proteins much different from BLG in complex food systems.


Assuntos
Lactoglobulinas/química , Leite/química , Estabilidade Proteica , Desdobramento de Proteína , Animais , Bovinos , Modelos Moleculares , Desnaturação Proteica , Termodinâmica
6.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824443

RESUMO

Surface layers (S-layers) are proteinaceous arrays covering the cell walls of numerous bacteria. Their suggested properties, such as interactions with the host immune system, have been only poorly described. Here, we aimed to elucidate the role of the S-layer from the probiotic bacterial strain Lactobacillus helveticus MIMLh5 in the stimulation of murine bone-marrow-derived dendritic cells (DCs). MIMLh5 induced greater production of interferon beta (IFN-ß), interleukin 10 (IL-10), and IL-12p70, compared to S-layer-depleted MIMLh5 (naked MIMLh5 [n-MIMLh5]), whereas the isolated S-layer was a poor immunostimulator. No differences in the production of tumor necrosis factor alpha (TNF-α) or IL-1ß were found. Inhibition of the mitogen-activated protein kinases JNK1/2, p38, and ERK1/2 modified IL-12p70 production similarly in MIMLh5 and n-MIMLh5, suggesting the induction of the same signaling pathways by the two bacterial preparations. Treatment of DCs with cytochalasin D to inhibit endocytosis before the addition of fluorescently labeled MIMLh5 cells led to a dramatic reduction in the proportion of fluorescence-positive DCs and decreased IL-12 production. Endocytosis and IL-12 production were only marginally affected by cytochalasin D pretreatment when fluorescently labeled n-MIMLh5 was used. Treatment of DCs with fluorescently labeled S-layer-coated polystyrene beads (Sl-beads) resulted in much greater uptake of beads, compared to noncoated beads. Prestimulation of DCs with cytochalasin D reduced the uptake of Sl-beads more than plain beads. These findings indicate that the S-layer plays a role in the endocytosis of MIMLh5 by DCs. In conclusion, this study provides evidence that the S-layer of L. helveticus MIMLh5 is involved in endocytosis of the bacterium, which is important for strong Th1-inducing cytokine production.IMPORTANCE Beneficial microbes may positively affect host physiology at various levels, e.g., by participating in immune system maturation and modulation, boosting defenses and dampening reactions, thus affecting the whole homeostasis. As a consequence, the use of probiotics is increasingly regarded as suitable for more extended applications for health maintenance, not only microbiota balancing. This implies a deep knowledge of the mechanisms and molecules involved in host-microbe interactions, for the final purpose of fine tuning the choice of a probiotic strain for a specific outcome. With this aim, studies targeted to the description of strain-related immunomodulatory effects and the identification of bacterial molecules responsible for specific responses are indispensable. This study provides new insights in the characterization of the food-origin probiotic bacterium L. helveticus MIMLh5 and its S-layer protein as a driver for the cross-talk with DCs.


Assuntos
Células Dendríticas/fisiologia , Endocitose , Lactobacillus helveticus/química , Probióticos/química , Animais , Medula Óssea , Camundongos Endogâmicos C57BL
7.
Biotechnol Appl Biochem ; 66(4): 607-616, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31056790

RESUMO

Lipases are surface-active enzymes, acting on their substrates at the polar/nonpolar interface in emulsions. This study was aimed to test whether their activity, specificity, and the rates of formation/degradation of the various hydrolysis intermediates (i.e., mono- and diglycerides of interest as surface-active agents) could be modulated by adhesion of the triglyceride substrates as a thin layer on the surface of solids. These hypotheses were tested by using an array of food-grade lipases used in bakery, testing various types of starch as the "solid" phase. Starch-dependent increase in the hydrolysis rate was tested by pH-stat techniques on pure triglycerides and on food-grade oils in diluted emulsions. Starch-related improvements in the rate of fatty acids release were most evident at temperatures above 40 °C, and when using maize starch instead of wheat starch. Starch-dependent changes in the nature of the hydrolysis products were tested by chromatographic profiling of ethyl ether extracts from aqueous slurries containing up to 33% fat and 33% starch. Accumulation of mono- and diglycerides as hydrolysis intermediates was found to be modulated by the type of oil being used, by the reaction conditions, as well as by the enzyme nature and amount.


Assuntos
Lipase/metabolismo , Amido/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Hidrólise/efeitos dos fármacos , Cinética , Lipase/química , Amido/química , Amido/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Triglicerídeos/química , Triglicerídeos/metabolismo
8.
Molecules ; 24(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491840

RESUMO

To improve the current understanding of the role of stilbenoids in the management of diabetes, the inhibition of the pancreatic α-amylase by resveratrol derivatives was investigated. To approach in a systematic way, the mechanistic and structural aspects of the interaction, potential bioactive agents were prepared as single molecules, that were used for the biological evaluation of the determinants of inhibitory binding. Some dimeric stilbenoids-in particular, viniferin isomers- were found to be better than the reference drug acarbose in inhibiting the pancreatic α-amylase. Racemic mixtures of viniferins were more effective inhibitors than the respective isolated pure enantiomers at an equivalent total concentration, and displayed cooperative effects not observed with the individual enantiomers. The molecular docking analysis provided a thermodynamics-based rationale for the measured inhibitory ability and for the observed synergistic effects. Indeed, the binding of additional ligands on the surface of the alpha-amylase was found to decrease the dissociation constant of inhibitors bound to the active site of the enzyme, thus providing a mechanistic rationale for the observed inhibitory synergies.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , alfa-Amilases Pancreáticas/antagonistas & inibidores , Resveratrol/química , Resveratrol/farmacologia , Sítios de Ligação , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Resveratrol/análogos & derivados
9.
Plant Foods Hum Nutr ; 74(1): 128-134, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30661219

RESUMO

This study was aimed at characterizing the anthocyanins and phenolics profile in different varieties of pigmented corn and wheat and in some of their milling fractions. Acid/ethanol extracts were used to assess total anthocyanins, overall antioxidant activity, the overall polyphenol profile, and for evaluating the inhibition of pancreatic α-amylase and of intestinal α-glucosidase. Both enzymes were inhibited in a dose-dependent manner by all extracts, but individual extracts had specific effects on each enzyme. Anti-inflammatory response was evaluated by using acid-free extracts and Caco-2 cells transiently transfected with a luciferase reporter gene responding to cytokine stimulation. The immune response of interleukin-stimulated cells decreased significantly in a dose-dependent manner in the presence of 20-50 µM/l anthocyanins from all grains extracts, again with a different efficiency. The inhibitory ability and the anti-inflammatory capability of these extracts are in most cases higher than in similar extracts from other sources, suggesting that activities in each extract may imply specific synergies between anthocyanins and other phenolics.


Assuntos
Antocianinas/farmacologia , Grão Comestível/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Triticum/química , Zea mays/química , Antocianinas/análise , Antioxidantes/metabolismo , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Alimento Funcional , Inibidores de Glicosídeo Hidrolases/análise , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Intestinos/enzimologia , Pâncreas/enzimologia , Fenóis/análise , Pigmentos Biológicos/análise , Pigmentos Biológicos/farmacologia , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
10.
Molecules ; 23(1)2018 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316637

RESUMO

FAD synthase (FADS, EC 2.7.7.2) is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf). Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase domain (named FADS6). This isoform has been previously detected in Riboflavin-Responsive (RR-MADD) and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L-1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (kcat about 2.8 min-1), as well as FAD pyrophosphorolysis in a strictly Mg2+-dependent manner. The synthesis of FAD is inhibited by HgCl2. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.


Assuntos
Nucleotidiltransferases/química , Domínio Catalítico , Clonagem Molecular , Cisteína/química , Escherichia coli , Flavina-Adenina Dinucleotídeo/química , Expressão Gênica , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Cinética , Modelos Moleculares , Nucleotidiltransferases/biossíntese , Oxirredução , Conformação Proteica em alfa-Hélice
11.
J Food Sci Technol ; 55(7): 2641-2648, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30042580

RESUMO

The development of innovative rice products is a way to exploiting and adding value to low-grade African rice varieties. To this purpose, rice-based pasta was enriched with flours from soybean and orange-fleshed sweet potato, that are common ingredients in the African tradition. Four different formulations based on pre-gelatinized rice flour and liquid egg albumen, and containing soybean and/or sweet potato (up to 20%) were prepared and characterized via a multidisciplinary approach. Soybean and sweet potato enrichment leads to a decrease in the pasta consistency and in significant changes in the color of the resulting samples, likely due to Maillard-type reactions. E-sensing approaches indicated that the sensory profile of the various pasta products strongly depends on the type of enrichment. Data collected after cooking suggest that both soybean and sweet potato have a role in defining the firmness and water absorption, as well as the optimum cooking time. Structural characterization of proteins in the uncooked products indicates the presence of protein aggregates stabilized by hydrophobic interactions and disulfide bonds in all samples, although structural properties of the aggregates related to specific compositional traits.

12.
Biochemistry ; 56(15): 2116-2125, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28358192

RESUMO

The protein disulfide isomerase (PDI) family comprises a wide set of enzymes mainly involved in thiol-disulfide exchange reactions in the endoplasmic reticulum. Class A PDIs (PDI-A) constitute the smallest members of the family, consisting of a single thioredoxin (TRX) module without any additional domains. To date, their catalytic activity and cellular function are still poorly understood. To gain insight into the role of higher-plant class A PDIs, the biochemical properties of rAtPDI-A, the recombinant form of Arabidopsis thaliana PDI-A, have been investigated. As expressed, rAtPDI-A has only little oxidoreductase activity, but it appears to be capable of binding an iron-sulfur (Fe-S) cluster, most likely a [2Fe-2S] center, at the interface between two protein monomers. A mutational survey of all cysteine residues of rAtPDI-A indicates that only the second and third cysteines of the CXXXCKHC stretch, containing the putative catalytic site CKHC, are primarily involved in cluster coordination. A key role is also played by the lysine residue. Its substitution with glycine, which restores the canonical PDI active site CGHC, does not influence the oxidoreductase activity of the protein, which remains marginal, but strongly affects the binding of the cluster. It is therefore proposed that the unexpected ability of rAtPDI-A to accommodate an Fe-S cluster is due to its very unique CKHC motif, which is conserved in all higher-plant class A PDIs, differentiating them from all other members of the PDI family.


Assuntos
Arabidopsis/enzimologia , Ferro/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Recombinantes/metabolismo
13.
Biochim Biophys Acta ; 1864(7): 805-13, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27085639

RESUMO

Adsorption on the surface of sub-micrometric oil droplets resulted in significant changes in the tertiary structure of bovine beta-lactoglobulin (BLG), a whey protein broadly used as a food ingredient and a major food allergen. The adsorbed protein had increased sensitivity to trypsin, and increased immunoreactivity towards specific monoclonal antibodies. In spite of the extensive tryptic breakdown of emulsion-bound BLG, some sequence stretches in BLG became trypsin-insensitive upon absorption of the protein on the fat droplets. As a consequence - at contrast with free BLG - proteolysis of emulsion-bound BLG did not decrease the immunoreactivity of the protein, and some of the large peptides generated by trypsinolysis of emulsion-bound BLG were still recognizable by specific monoclonal antibodies. Structural changes occurring in emulsion-bound BLG and their consequences are discussed in comparison with those occurring when the tertiary structure of BLG is modified by lipophilic salts, by urea, or upon interaction with solid hydrophobic surfaces. Such a comparison highlights the relevance of situation-specific structural modifications, that in turn may affect physiologically relevant features of the protein.


Assuntos
Lactoglobulinas/química , Adsorção , Emulsões , Ensaio de Imunoadsorção Enzimática , Lactoglobulinas/imunologia , Modelos Moleculares , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
14.
Biometals ; 30(3): 355-365, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28337565

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disorder with unknown etiology, in which genetic and environmental factors interplay to determine the onset and the course of the disease. Exposure to toxic metals has been proposed to be involved in the etiology of the disease either through a direct damage or by promoting oxidative stress. In this study we evaluated the concentration of a panel of metals in serum and whole blood of a small group of sporadic patients, all living in a defined geographical area, for which acid mine drainage has been reported. ALS prevalence in this area is higher than in the rest of Italy. Results were analyzed with software based on artificial neural networks. High concentrations of metals (in particular Se, Mn and Al) were associated with the disease group. Arsenic serum concentration resulted lower in ALS patients, but it positively correlated with disease duration. Comet assay was performed to evaluate endogenous DNA damage that resulted not different between patients and controls. Up to now only few studies considered geographically well-defined clusters of ALS patients. Common geographical origin among patients and controls gave us the chance to perform metallomic investigations under comparable conditions of environmental exposure. Elaboration of these data with software based on machine learning processes has the potential to be extremely useful to gain a comprehensive view of the complex interactions eventually leading to disease, even in a small number of subjects.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Oligoelementos/sangue , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade
15.
Biochim Biophys Acta ; 1844(12): 2086-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135855

RESUMO

FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is the last enzyme in the pathway converting riboflavin into FAD. In humans, FADS is localized in different subcellular compartments and exists in different isoforms. Isoform 2 (490-amino acids) is organized in two domains: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and one resembling a molybdopterin-binding (MPTb) domain, with a hypothetical regulatory role. hFADS2 contains ten Cys residues, seven of which located in the PAPS reductase domain, with a possible involvement either in FAD synthesis or in FAD delivery to cognate apo-flavoproteins. A homology model of the PAPS reductase domain of hFADS2 revealed a co-ordinated network among the Cys residues in this domain. In this model, C312 and C303 are very close to the flavin substrate, consistent with a significantly lowered FAD synthesis rate in C303A and C312A mutants. FAD synthesis is also inhibited by thiol-blocking reagents, suggesting the involvement of free cysteines in the hFADS2 catalytic cycle. Mass spectrometry measurements and titration with thiol reagents on wt hFADS2 and on several individual cysteine/alanine mutants allowed us to detect two stably reduced cysteines (C139 and C241, one for each protein domain), two stable disulfide bridges (C399-C402, C303-C312, both in the PAPS domain), and two unstable disulfides (C39-C50; C440-C464). Whereas the C39-C50 unstable disulfide is located in the MPTb domain and appears to have no catalytic relevance, a cysteine-based redox switch may involve formation and breakdown of a disulfide between C440 and C464 in the PAPS domain.

16.
J Biol Inorg Chem ; 20(6): 1039-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26246371

RESUMO

In bacteria, HscB is the cochaperone of HscA in modulating the transfer of 2Fe2S clusters from a cluster-loaded form of the scaffold protein IscU to acceptor apoproteins. HscB binding to the IscU apoform (apoIscU) reportedly impairs the structural flexibility of apoIscU, but the effects of HscB on cluster formation on IscU have never been assessed. We report that presence of HscB impaired the rate-but not the equilibrium-of the appearance of the distinctive circular dichroism signals associated with formation of a stable 2Fe-2S cluster on IscU in reconstitution experiments. This impairment: (1) was independent of the source of cluster sulfide; (2) was not observed for HscB mutants unable to bind IscU; (3) implied formation of a 1/1 HscB/IscU complex; (4) was not observed for a D39A mutant of IscU, with a much more rigid structure than wt IscU. The cluster species assembled on IscU in the presence of HscB were transferred to apoferredoxin at a slower rate than those formed in the absence of HscB, unless ATP and HscA were also present. At contrast, HscB was found to improve the "catalytic" function of IscU with respect to cluster assembly in the presence of a large apoferredoxin excess. Thus, the HscB/IscU interaction may modulate formation and transfer of FeS clusters by accelerating cluster biosynthesis when appropriate target apoproteins are abundant or by slowing it down when the rate of apoprotein synthesis is slow, and cluster-loaded IscU is more likely to play a role as a "FeS storage" protein.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Escherichia coli , Ferredoxinas/química , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Ligação Proteica
17.
Proteins ; 82(11): 3154-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25143010

RESUMO

Rubredoxins (Rds) are small proteins containing a tetrahedral Fe(SCys)4 site. Folded forms of metal free Rds (apoRds) show greatly impaired ability to incorporate iron compared with chaotropically unfolded apoRds. In this study, formation of the Rd holoprotein (holoRd) on addition of iron to a structured, but iron-uptake incompetent apoRd was investigated in the presence of polystyrene nanoparticles (NP). In our rationale, hydrophobic contacts between apoRd and the NP surface would expose protein regions (including ligand cysteines) buried in the structured apoRd, allowing iron incorporation and folding to the native holoRd. Burial of the hydrophobic regions in the folded holoRd would allow its detachment from the NP surface. We found that both rate and yield of holoRd formation increased significantly in the presence of NP and were influenced by the NP concentration and size. Rates and yields had an optimum at "catalytic" NP concentrations (0.2 g/L NP) when using relatively small NP (46 nm diameter). At these optimal conditions, only a fraction of the apoRd was bound to the NP, consistent with the occurrence of turnover events on the NP surface. Lower rates and yields at higher NP concentrations or when using larger NP (200 nm) suggest that steric effects and molecular crowding on the NP surface favor specific "iron-uptake-competent" conformations of apoRd on the NP surface. This bio-mimetic chaperone system may be applicable to other proteins requiring an unfolding step before cofactor-triggered refolding, particularly when over-expressed under limited cofactor accessibility.


Assuntos
Chaperonas Moleculares/química , Nanoestruturas/química , Rubredoxinas/química , Biomimética , Compostos Férricos/química , Interações Hidrofóbicas e Hidrofílicas , Ferro/metabolismo , Lactoglobulinas/química , Concentração Osmolar , Poliestirenos/química , Dobramento de Proteína , Compostos de Amônio Quaternário/química , Rubredoxinas/metabolismo , Espectrofotometria Ultravioleta
18.
Proteins ; 82(7): 1272-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24338946

RESUMO

Structural changes ensuing from the non-covalent absorption of bovine beta-lactoglobulin (BLG) on the surface of polystyrene nanoparticles were investigated by using spectroscopic approaches, by assessing the reactivity of specific residues, and by limited proteolysis/mass spectrometry. Also, the immunoreactivity of absorbed and free BLG was compared. All these approaches indicated substantial rearrangements of the protein structure in the absorbed state, in spite of the reported structural rigidity of BLG. Changes made evident by experimental measurements were confirmed by computational approaches. These indicate that adsorption-related changes are most marked in the area between the main C-terminal alpha helix and the beta-barrel, and lead to full exposure of the thiol on Cys121 , consistent with experimental measurements. In the computational model of bound BLG, both Trp61 and Trp19 also move away from their neighboring quenchers and become solvent-exposed, as indicated by fluorescence measurement. Upon binding, the beta-barrel also loosens, with a substantial increase in immunoreactivity and with noticeable changes in the trypsinolytic pattern. The possible general significance of the structural changes reported here for non-covalently adsorbed BLG is discussed with respect to recognition events involving surface-bound proteins, as are aspects related to the carrier function(s) of BLG, and to its use as a common ingredient in many food systems.


Assuntos
Lactoglobulinas/química , Lactoglobulinas/metabolismo , Simulação de Dinâmica Molecular , Nanopartículas/química , Poliestirenos/química , Desdobramento de Proteína , Animais , Bovinos , Espectrometria de Fluorescência
19.
Appl Environ Microbiol ; 80(17): 5161-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951779

RESUMO

Bifidobacterium bifidum MIMBb75 is a human intestinal isolate demonstrated to be interactive with the host and efficacious as a probiotic. However, the molecular biology of this microorganism is yet largely unknown. For this reason, we undertook whole-genome sequencing of B. bifidum MIMBb75 to identify potential genetic factors that would explain the metabolic and probiotic attributes of this bacterium. Comparative genomic analysis revealed a 45-kb chromosomal region that comprises 19 putative genes coding for a potential type IV secretion system (T4SS). Thus, we undertook the initial characterization of this genetic region by studying the putative virB1-like gene, named tgaA. Gene tgaA encodes a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT, cd00254.3) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP, pfam05257.4). By means of several in vitro assays, we experimentally confirmed that protein TgaA, consistent with its computationally assigned role, has peptidoglycan lytic activity, which is principally associated to the LT domain. Furthermore, immunofluorescence and immunogold labeling showed that the protein TgaA is abundantly expressed on the cell surface of B. bifidum MIMBb75. According to the literature, the T4SSs, which have not been characterized before in bifidobacteria, can have important implications for bacterial cell-to-cell communication as well as cross talk with host cells, justifying the interest for further studies aimed at the investigation of this genetic region.


Assuntos
Sistemas de Secreção Bacterianos/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Genes Bacterianos , Hidrólise , Dados de Sequência Molecular , Peptidoglicano/metabolismo
20.
Appl Environ Microbiol ; 80(17): 5170-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24814791

RESUMO

Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host's immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75's cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host's immune system.


Assuntos
Amidoidrolases/imunologia , Bifidobacterium/enzimologia , Bifidobacterium/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Peptidoglicano/metabolismo , Amidoidrolases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Parede Celular/química , Células Cultivadas , Cisteína/metabolismo , Histidina/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Peptidoglicano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA