Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446432

RESUMO

Silica hollow spheres with a diameter of 100-300 nm and a shell thickness of 8±2 nm were synthesized using a self-templating amphiphilic polymeric precursor, i.e., poly(ethylene glycol)-substituted hyperbranched polyethoxysiloxane. Their elastic properties were addressed with a high-frequency AFM indentation method based on the PeakForce QNM (quantitative nanomechanical mapping) mode enabling simultaneous visualization of the surface morphology and high-resolution mapping of the mechanical properties. The factors affecting the accuracy of the mechanical measurements such as a local slope of the particle surface, deformation of the silica hollow particles by a solid substrate, shell thickness variation, and applied force range were analysed. The Young's modulus of the shell material was evaluated as E=26±7 GPa independent of the applied force in the elastic regime of deformations. Beyond the elastic regime, the buckling instability was observed revealing a non-linear force-deformation response with a hysteresis between the loading and unloading force-distance curves and irreversible deformation of the shell at high applied forces. Thus, it was demonstrated that PeakForce QNM mode can be used for quantitative measurements of the elastic properties of submicon-sized silica hollow particles with nano-size shell thickness, as well as for estimation of the buckling behaviour beyond the elastic regime of shell deformations.

2.
Polymers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631420

RESUMO

A number of thioether-containing zirconium siloxanes, differing in their composition and metal atom shielding degree with a siloxy substituent, were synthesized and characterized. Synthesis of such compounds made it possible to evaluate the effect of sulfur atoms' presence in the cured compositions on their dielectric properties, as well as to evaluate their curing ability and influence on mechanical characteristics compared to the sulfur-free analogs obtained earlier. Studying a wide range of compositions differing in their content and ratio of metallosiloxane and silica components revealed that such systems are still typical dielectrics. At the same time, the introduction of thioether groups can provide increased dielectric constant and conductivity in comparison with previously obtained sulfur-free similar compositions in the <102 Hz frequency range (dielectric constant up to ~10-30 at frequency range 1-10 Hz). As before, the dielectric parameters increase is directly determined by the silica component proportion in the cured material. It is also shown that varying sulfur-containing zirconium siloxanes structure and functionality and its combination with previously obtained sulfur-free analogs, along with varying the functionality and rubber chain length, can be an effective tool for changing the dielectric and mechanical material parameters in a wide range (tensile strength 0.5-7 Mpa, elastic deformation 2-300%), which determine the prospects for the use of such cured systems as dielectric elastomers for various purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA