Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 308: 44-56, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31299263

RESUMO

Lung cancer is the leading cause of cancer-related deaths. Late diagnosis and inadequate therapies contribute to poor outcomes. MicroRNAs (miRNAs) are small non-coding RNAs and are involved in lung cancer development. Because miRNAs simultaneously regulate several cancer-related genes, they represent an interesting therapeutic approach for cancer treatment. We have developed Coated Cationic Lipid-nanoparticles entrapping miR-660 (CCL660) and intraperitoneally administered (1.5 mg/Kg) twice a week for four weeks into SCID mice carrying subcutaneously lung cancer Patients Derived Xenografts (PDXs). Obtained data demonstrated that miR-660 is down-regulated in lung cancer patients and that its replacement inhibited lung cancer growth by inhibiting the MDM2-P53 axis. Furthermore, systemic delivery of CCL660 increased miRNA levels in tumors and significantly reduced tumor growth in two different P53 wild-type PDXs without off-target effects. MiR-660 administration reduced cancer cells proliferation by inhibiting MDM2 and restoring P53 function and its downstream effectors such as p21. Interestingly, anti-tumoral effects of CCL660 also in P53 mutant PDXs but with a functional p21 pathway were observed. Stable miR-660 expression inhibited the capacity of H460 metastatic lung cancer cells to form lung nodules when injected intravenously into SCID mice suggesting a potential role of miR-660 in metastatic dissemination. To investigate the potential toxic effects of both miRNAs and delivery agents, an in vitro approach revealed that miR-660 replacement did not induce any changes in both mouse and human normal cells. Interestingly, lipid-nanoparticle delivery of synthetic miR-660 had no immunological off-target or acute/chronic toxic effects on immunocompetent mice. Altogether, our results highlight the potential role of coated cationic lipid-nanoparticles entrapping miR-660 in lung cancer treatment without inducing immune-related toxic effects.


Assuntos
Lipídeos/química , Neoplasias Pulmonares/terapia , MicroRNAs/genética , Nanopartículas , Animais , Cátions , Proliferação de Células/genética , Regulação para Baixo , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Clin Invest ; 127(1): 153-168, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27893461

RESUMO

Most patients who initially respond to treatment with the multi-tyrosine kinase inhibitor sunitinib eventually relapse. Therefore, developing a deeper understanding of the contribution of sunitinib's numerous targets to the clinical response or to resistance is crucial. Here, we have shown that cancer cells respond to clinically relevant doses of sunitinib by enhancing the stability of the antiapoptotic protein MCL-1 and inducing mTORC1 signaling, thus evoking little cytotoxicity. Inhibition of MCL-1 or mTORC1 signaling sensitized cells to clinically relevant doses of sunitinib in vitro and was synergistic with sunitinib in impairing tumor growth in vivo, indicating that these responses are triggered as prosurvival mechanisms that enable cells to tolerate the cytotoxic effects of sunitinib. Furthermore, higher doses of sunitinib were cytotoxic, triggered a decline in MCL-1 levels, and inhibited mTORC1 signaling. Mechanistically, we determined that sunitinib modulates MCL-1 stability by affecting its proteasomal degradation. Dual modulation of MCL-1 stability at different dose ranges of sunitinib was due to differential effects on ERK and GSK3ß activity, and the latter also accounted for dual modulation of mTORC1 activity. Finally, comparison of patient samples prior to and following sunitinib treatment suggested that increases in MCL-1 levels and mTORC1 activity correlate with resistance to sunitinib in patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/tratamento farmacológico , Pirróis/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Estabilidade Enzimática , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Sunitinibe , Serina-Treonina Quinases TOR/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA