Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148840

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
2.
Nat Methods ; 20(5): 714-722, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012480

RESUMO

Major aims of single-cell proteomics include increasing the consistency, sensitivity and depth of protein quantification, especially for proteins and modifications of biological interest. Here, to simultaneously advance all these aims, we developed prioritized Single-Cell ProtEomics (pSCoPE). pSCoPE consistently analyzes thousands of prioritized peptides across all single cells (thus increasing data completeness) while maximizing instrument time spent analyzing identifiable peptides, thus increasing proteome depth. These strategies increased the sensitivity, data completeness and proteome coverage over twofold. The gains enabled quantifying protein variation in untreated and lipopolysaccharide-treated primary macrophages. Within each condition, proteins covaried within functional sets, including phagosome maturation and proton transport, similarly across both treatment conditions. This covariation is coupled to phenotypic variability in endocytic activity. pSCoPE also enabled quantifying proteolytic products, suggesting a gradient of cathepsin activities within a treatment condition. pSCoPE is freely available and widely applicable, especially for analyzing proteins of interest without sacrificing proteome coverage. Support for pSCoPE is available at http://scp.slavovlab.net/pSCoPE .


Assuntos
Proteoma , Proteômica , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas , Peptídeos/química , Macrófagos
3.
J Allergy Clin Immunol ; 150(5): 1216-1224, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35728653

RESUMO

BACKGROUND: During the first year of life, B-cell level is a valuable indicator of whether external factors, such as exposure to B-cell-depleting therapies, have an adverse impact on immune system development. However, there are no standard reference ranges of B-cell levels in healthy infants by age. OBJECTIVE: Our aim was to estimate the normal range of B-cell levels in infants, by age, during the first year of life by pooling data from published studies. METHODS: Studies reporting B-cell levels measured by using flow cytometry and CD19 markers in healthy infants were identified via a systematic literature review. Quality and feasibility assessments determined suitability for inclusion in meta-analyses by age group and/or continuous age. Means and normal ranges (2.5th-97.5th percentile) were estimated for absolute and percentage B-cell levels. Sensitivity analyses assessed the impact of various assumptions. RESULTS: Of the 37 relevant studies identified, 28 were included in at least 1 meta-analysis. The means and normal ranges of B-cell levels were found to be 707 cells/µL in cord blood (range 123-2324 cells/µL), 508 cells/µL in infants aged 0 to 1 month (range 132-1369 cells/µL), 1493 cells/µL in infants aged 1 to 6 months (range 416-3877 cells/µL), and 1474 cells/µL in infants older than 6 months (range 416-3805 cells/µL). The continuous age model showed that B-cell levels peaked at week 26. Trends were similar for the percentage B-cell estimates and in sensitivity analyses. CONCLUSION: These meta-analyses provide the first normal reference ranges for B-cell levels in infants, by week of age, during the first year of life.


Assuntos
Antígenos CD19 , Linfócitos B , Lactente , Humanos , Valores de Referência , Citometria de Fluxo
4.
Eur J Immunol ; 50(3): 317-325, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31986556

RESUMO

Humans are constantly exposed to fungi, either in the form of commensals at epithelial barriers or as inhaled spores. Innate immune cells play a pivotal role in maintaining commensal relationships and preventing skin, mucosal, or systemic fungal infections due to the expression of pattern recognition receptors that recognize fungal cell wall components and modulate both their activation status and the ensuing adaptive immune response. Commensal fungi also play a critical role in the modulation of homeostasis and disease susceptibility at epithelial barriers. This review will outline cellular and molecular mechanisms of anti-fungal innate immunity focusing on C-type lectin receptors and their relevance in the context of host-fungi interactions at skin and mucosal surfaces in murine experimental models as well as patients susceptible to fungal infections.


Assuntos
Fungos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Lectinas Tipo C/imunologia , Micoses/imunologia , Animais , Humanos
5.
J Immunol ; 198(9): 3426-3435, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341671

RESUMO

Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14+ monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14+ CD16- monocytes, TSLPR+ monocytes (TSLPR+ mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR+ mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6, ALOX15B, FCGR2B, LAIR1). Strikingly, TSLPR+ mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14+ CD1c+ cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14+ CD16- monocytes and prompt further ontogenetic and functional analysis of CD14+ CD1c+ and LPS-activated CD14+ CD1c+ TSLPR+ mono.


Assuntos
Diferenciação Celular , Citocinas/metabolismo , Monócitos/imunologia , Receptores de Citocinas/metabolismo , Sepse/imunologia , Antígenos CD1/metabolismo , Araquidonato 15-Lipoxigenase/genética , Células Cultivadas , Quimiocina CCL17/metabolismo , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interleucina-4/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Receptores de Citocinas/genética , Receptores de IgG/genética , Receptores Imunológicos/genética , Linfopoietina do Estroma do Timo
6.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769926

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) and inteleukin-3 (IL-3) have long been known as mediators of emergency myelopoiesis, but recent evidence has highlighted their critical role in modulating innate immune effector functions in mice and humans. This new wealth of knowledge has uncovered novel aspects of the pathogenesis of a range of disorders, including infectious, neoplastic, autoimmune, allergic and cardiovascular diseases. Consequently, GM-CSF and IL-3 are now being investigated as therapeutic targets for some of these disorders, and some phase I/II clinical trials are already showing promising results. There is also pre-clinical and clinical evidence that GM-CSF can be an effective immunostimulatory agent when being combined with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) in patients with metastatic melanoma as well as in novel cancer immunotherapy approaches. Finally, GM-CSF and to a lesser extent IL-3 play a critical role in experimental models of trained immunity by acting not only on bone marrow precursors but also directly on mature myeloid cells. Altogether, characterizing GM-CSF and IL-3 as central mediators of innate immune activation is poised to open new therapeutic avenues for several immune-mediated disorders and define their potential in the context of immunotherapies.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Imunidade Inata/genética , Interleucina-3/genética , Melanoma/genética , Animais , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Humanos , Imunoterapia/tendências , Melanoma/imunologia , Melanoma/terapia , Camundongos
7.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013832

RESUMO

B cell superantigens, also called immunoglobulin superantigens, bind to the variable regions of either the heavy or light chain of immunoglobulins mirroring the lymphocyte-activating properties of classical T cell superantigens. Protein A of Staphylococcus aureus, protein L of Peptostreptococcus magnus, and gp120 of HIV are typical immunoglobulin superantigens. Mast cells are immune cells expressing the high-affinity receptor for IgE (FcεRI) and are strategically located in the human heart, where they play a role in several cardiometabolic diseases. Here, we investigated whether immunoglobulin superantigens induced the activation of human heart mast cells (HHMCs). Protein A induced the de novo synthesis of cysteinyl leukotriene C4 (LTC4) from HHMCs through the interaction with IgE VH3+ bound to FcεRI. Protein L stimulated the production of prostaglandin D2 (PGD2) from HHMCs through the interaction with κ light chains of IgE. HIV glycoprotein gp120 induced the release of preformed (histamine) and de novo synthesized mediators, such as cysteinyl leukotriene C4 (LTC4), angiogenic (VEGF-A), and lymphangiogenic (VEGF-C) factors by interacting with the VH3 region of IgE. Collectively, our data indicate that bacterial and viral immunoglobulin superantigens can interact with different regions of IgE bound to FcεRI to induce the release of proinflammatory, angiogenic, and lymphangiogenic factors from human cardiac mast cells.


Assuntos
Mastócitos/imunologia , Mastócitos/metabolismo , Miocárdio/imunologia , Miocárdio/metabolismo , Superantígenos/imunologia , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Biomarcadores , Liberação de Histamina , Humanos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia
8.
Exp Dermatol ; 26(1): 11-17, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27305467

RESUMO

Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.


Assuntos
Carcinoma Basocelular/fisiopatologia , Carcinoma de Células Escamosas/fisiopatologia , Mastócitos/patologia , Mastócitos/fisiologia , Melanoma/fisiopatologia , Neoplasias Cutâneas/fisiopatologia , Animais , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral
9.
Handb Exp Pharmacol ; 241: 121-139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28332048

RESUMO

Mast cells and basophils represent the most relevant source of histamine in the immune system. Histamine is stored in cytoplasmic granules along with other amines (e.g., serotonin), proteases, proteoglycans, cytokines/chemokines, and angiogenic factors and rapidly released upon triggering with a variety of stimuli. Moreover, mast cell and basophil histamine release is regulated by several activating and inhibitory receptors. The engagement of different receptors can trigger different modalities of histamine release and degranulation. Histamine released from mast cells and basophils exerts its biological activities by activating four G protein-coupled receptors, namely H1R, H2R, H3R (expressed mainly in the brain), and the recently identified H4R. While H1R and H2R activation accounts mainly for some mast cell- and basophil-mediated allergic disorders, the selective expression of H4R on immune cells is uncovering new roles for histamine (possibly derived from mast cells and basophils) in allergic, inflammatory, and autoimmune disorders. Thus, the in-depth knowledge of mast cell and basophil histamine release and its biologic effects is poised to uncover new therapeutic avenues for a wide spectrum of disorders.


Assuntos
Basófilos/metabolismo , Liberação de Histamina/fisiologia , Histamina/metabolismo , Mastócitos/metabolismo , Animais , Citocinas/metabolismo , Humanos , Hipersensibilidade/metabolismo , Sistema Imunitário/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
Eur J Immunol ; 45(7): 2042-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25824485

RESUMO

Basophil-derived IL-4 is involved in the alternative activation of mouse monocytes, as recently shown in vivo. Whether this applies to human basophils and monocytes has not been established yet. Here, we sought to characterise the interaction between basophils and monocytes and identify the molecular determinants. A basophil-monocyte co-culture model revealed that IL-3 and basophil-derived IL-4 and IL-13 induced monocyte production of CCL17, a marker of alternative activation. Critically, IL-3 and IL-4 acted directly on monocytes to induce CCL17 production through histone H3 acetylation, but did not increase the recruitment of STAT5 or STAT6. Although freshly isolated monocytes did not express the IL-3 receptor α chain (CD123), and did not respond to IL-3 (as assessed by STAT5 phosphorylation), the overnight incubation with IL-4 (especially if associated with IL-3) upregulated CD123 expression. IL-3-activated JAK2-STAT5 pathway inhibitors reduced the CCL17 production in response to IL-3 and IL-4, but not to IL-4 alone. Interestingly, monocytes isolated from allergen-sensitised asthmatic patients exhibited a higher expression of CD123. Taken together, our data show that the JAK2-STAT5 pathway modulates both basophil and monocyte effector responses. The coordinated activation of STAT5 and STAT6 may have a major impact on monocyte alternative activation in vitro and in vivo.


Assuntos
Basófilos/imunologia , Interleucina-13/imunologia , Interleucina-3/imunologia , Interleucina-4/imunologia , Monócitos/imunologia , Transdução de Sinais/imunologia , Western Blotting , Quimiocina CCL17/biossíntese , Imunoprecipitação da Cromatina , Técnicas de Cocultura/métodos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase em Tempo Real
11.
Sci Adv ; 10(27): eadg3747, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959314

RESUMO

Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.


Assuntos
Adjuvantes Imunológicos , Pirimidinas , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Humanos , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/metabolismo , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Receptor 7 Toll-Like/agonistas , Pirimidinas/farmacologia , Pirimidinas/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Imidazóis/farmacologia , Imidazóis/química , Células THP-1 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , COVID-19/virologia , COVID-19/imunologia , NF-kappa B/metabolismo , Feminino , Descoberta de Drogas/métodos , Imunidade Inata/efeitos dos fármacos
12.
NPJ Vaccines ; 8(1): 18, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788219

RESUMO

Development of SARS-CoV-2 vaccines that protect vulnerable populations is a public health priority. Here, we took a systematic and iterative approach by testing several adjuvants and SARS-CoV-2 antigens to identify a combination that elicits antibodies and protection in young and aged mice. While demonstrating superior immunogenicity to soluble receptor-binding domain (RBD), RBD displayed as a protein nanoparticle (RBD-NP) generated limited antibody responses. Comparison of multiple adjuvants including AddaVax, AddaS03, and AS01B in young and aged mice demonstrated that an oil-in-water emulsion containing carbohydrate fatty acid monosulphate derivative (CMS:O/W) most effectively enhanced RBD-NP-induced cross-neutralizing antibodies and protection across age groups. CMS:O/W enhanced antigen retention in the draining lymph node, induced injection site, and lymph node cytokines, with CMS inducing MyD88-dependent Th1 cytokine polarization. Furthermore, CMS and O/W synergistically induced chemokine production from human PBMCs. Overall, CMS:O/W adjuvant may enhance immunogenicity and protection of vulnerable populations against SARS-CoV-2 and other infectious pathogens.

13.
Arthritis Rheum ; 63(8): 2504-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21381000

RESUMO

OBJECTIVE: To investigate the phenotype and function of CD4+ T cells in synovial fluid (SF) from the affected joints of children with oligoarticular-onset juvenile idiopathic arthritis (JIA), and to establish a possible link with disease activity. METHODS: CD4+ T cells were obtained from the peripheral blood (PB) and SF of 23 children with oligoarticular-onset JIA, as well as from the PB of 15 healthy children. The cells were analyzed for the expression of CXCR3, CCR6, and CD161 and for the production of interferon-γ and interleukin-17A (IL-17A). Spectratyping and clonotype analyses were performed to assess different T cell subsets. RESULTS: The numbers of CD4+CD161+ cells showing either the Th1 or the Th17/Th1 phenotype were higher in the SF than in the PB of children with JIA. The few Th17 cells from JIA SF underwent a spontaneous shift to the Th1 phenotype in vitro, whereas Th17 cells from the PB of healthy children shifted only in the presence of JIA SF; this effect was neutralized by antibody blockade of IL-12 activity. Spectratyping and clonotype analyses showed a similar skewing of the T cell receptor V(ß) repertoire in both CD161+ Th17 cells and CD161+ Th1 cells derived from the SF of the same JIA patient. The frequencies of CD4+CD161+ cells, particularly the Th17/Th1 cells, in the JIA SF positively correlated with the erythrocyte sedimentation rate and levels of C-reactive protein. CONCLUSION: These findings suggest that a shifting of CD4+CD161+ T cells from Th17 to the Th17/Th1 or Th1 phenotype can occur in the SF of children with oligoarticular-onset JIA, and indicate that the accumulation of these cells is correlated with parameters of inflammation. Thus, the results support the hypothesis that these cells may play a role in JIA disease activity.


Assuntos
Artrite Juvenil/imunologia , Interleucina-17/metabolismo , Líquido Sinovial/imunologia , Células Th17/metabolismo , Adolescente , Artrite Juvenil/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Interleucina-17/imunologia , Masculino , Líquido Sinovial/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia
14.
Mult Scler Relat Disord ; 64: 103963, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753176

RESUMO

BACKGROUND: Most disease-modifying therapies (DMTs) approved for the treatment of multiple sclerosis (MS) are not recommended during pregnancy, and discouraged while breastfeeding. However, discontinuation of some DMTs before pregnancy can leave women vulnerable to MS relapses. Although available data on ocrelizumab suggest no increased risk in terms of pregnancy or neonatal outcomes, it is unknown whether ocrelizumab transfers across the placenta or is absorbed through breastmilk; and if so, whether infant B cell development, immune responses or growth and development are affected. This manuscript describes two studies designed to address these uncertainties. METHODS/DESIGN: MINORE and SOPRANINO are multicentre open-label studies. MINORE, which addresses placental transfer, will recruit 44 women with MS or clinically isolated syndrome (CIS) exposed to ocrelizumab between 6 months before the last menstrual period (LMP) to the end of the first trimester. It will evaluate pharmacodynamic effects of potential in utero exposure through the proportion of infants with B cell numbers below lower limit of normal (LLN) at week 6 of life (primary endpoint); as well as through vaccine-induced antibody responses (reflecting B cell function) during the first year of life. Placental transfer will be assessed through measurement of ocrelizumab concentrations in paired samples at delivery (maternal blood as well as umbilical cord blood), and infant serum at week 6 of life. SOPRANINO, which evaluates breastmilk transfer, will recruit 20 women with MS or CIS who resume or initiate ocrelizumab treatment while breastfeeding. The effect of potential exposure through breastmilk will be assessed through the proportion of infants with B cell levels below LLN at 30 days after the mother's first post-partum ocrelizumab infusion (co-primary endpoint). Infant exposure via breastmilk will be assessed through ocrelizumab average daily infant dose in breastmilk over 60 days after the same infusion (co-primary endpoint). Vaccine-induced responses will be measured as in MINORE. Both studies will also measure infant growth and development over the first year of life and safety outcomes in both mothers and infants. All analyses will be descriptive, under an estimand framework. DISCUSSION: Both studies are designed to mimic real-world clinical practice. Treatment decisions for ocrelizumab are independent from study participation; as such, these studies will recruit women who decide, along with their physicians, to continue their pregnancies despite potential in utero exposure (for MINORE); or to breastfeed while under ocrelizumab treatment (for SOPRANINO). MINORE is the first prospective study to measure placental transfer of any DMT in MS, and to perform comprehensive assessments in infants and mothers. Results may inform the optimal contraception period for women treated with ocrelizumab who are planning a pregnancy. Similarly, SOPRANINO is the first prospective study to measure pharmacodynamic effects of ocrelizumab in breastfed infants in addition to pharmacokinetic parameters in breastmilk. SOPRANINO may establish whether breastfeeding is safe for infants whose mothers received treatment with ocrelizumab. CONCLUSION: By collecting detailed pharmacokinetic, pharmacodynamic and safety information, MINORE and SOPRANINO will contribute to understanding the risk/benefit of ocrelizumab in pregnant and lactating women with MS.


Assuntos
Anticorpos Monoclonais Humanizados , Aleitamento Materno , Fatores Imunológicos , Esclerose Múltipla , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Lactente , Recém-Nascido , Lactação , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Placenta , Gravidez , Complicações na Gravidez , Estudos Prospectivos
15.
Sci Rep ; 12(1): 16860, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258023

RESUMO

Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.


Assuntos
Coqueluche , Animais , Criança , Humanos , Lactente , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Vacina contra Coqueluche , Receptor 7 Toll-Like/agonistas , Vacinação , Vacinas Acelulares , Coqueluche/epidemiologia
16.
ACS Chem Biol ; 17(9): 2559-2571, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36028220

RESUMO

Adjuvanted nanocarrier-based vaccines hold substantial potential for applications in novel early-life immunization strategies. Here, via mouse and human age-specific in vitro modeling, we identified the combination of a small-molecule STING agonist (2'3'-cyclic GMP-AMP, cGAMP) and a TLR7/8 agonist (CL075) to drive the synergistic activation of neonatal dendritic cells and precision CD4 T-helper (Th) cell expansion via the IL-12/IFNγ axis. We further demonstrate that the vaccination of neonatal mice with quadrivalent influenza recombinant hemagglutinin (rHA) and an admixture of two polymersome (PS) nanocarriers separately encapsulating cGAMP (cGAMP-PS) and CL075 (CL075-PS) drove robust Th1 bias, high frequency of T follicular helper (TFH) cells, and germinal center (GC) B cells along with the IgG2c-skewed humoral response in vivo. Dual-loaded cGAMP/CL075-PSs did not outperform admixed cGAMP-PS and CL075-PS in vivo. These data validate an optimally designed adjuvantation system via age-selected small-molecule synergy and a multicomponent nanocarrier formulation as an effective approach to induce type 1 immune responses in early life.


Assuntos
Hemaglutininas , Receptor 7 Toll-Like , Adjuvantes Imunológicos/farmacologia , Animais , Humanos , Imunização , Interleucina-12 , Camundongos , Vacinação
17.
Nat Commun ; 13(1): 4234, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918315

RESUMO

Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Virais de Fusão
18.
Commun Biol ; 5(1): 790, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933439

RESUMO

The SARS-CoV-2 Omicron variant evades vaccine-induced immunity. While a booster dose of ancestral mRNA vaccines effectively elicits neutralizing antibodies against variants, its efficacy against Omicron in older adults, who are at the greatest risk of severe disease, is not fully elucidated. Here, we evaluate multiple longitudinal immunization regimens of mRNA BNT162b2 to assess the effects of a booster dose provided >8 months after the primary immunization series across the murine lifespan, including in aged 21-month-old mice. Boosting dramatically enhances humoral and cell-mediated responses with evidence of Omicron cross-recognition. Furthermore, while younger mice are protected without a booster dose, boosting provides sterilizing immunity against Omicron-induced lung infection in aged 21-month-old mice. Correlational analyses reveal that neutralizing activity against Omicron is strongly associated with protection. Overall, our findings indicate age-dependent vaccine efficacy and demonstrate the potential benefit of mRNA booster immunization to protect vulnerable older populations against SARS-CoV-2 variants.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , SARS-CoV-2 , Vacinação , Vacinas Virais/genética
19.
Sci Transl Med ; 14(629): eabj5305, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34783582

RESUMO

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Assuntos
Hidróxido de Alumínio , COVID-19 , Idoso , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas , Vacinas de mRNA
20.
Front Cell Infect Microbiol ; 11: 808005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118012

RESUMO

Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.


Assuntos
Doenças Transmissíveis , Vacinas , Adjuvantes Imunológicos , Antígenos , Carboidratos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA