Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(2): 387-399.e17, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270043

RESUMO

HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adulto , Linfócitos B/imunologia , Linhagem Celular , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica/métodos , Anticorpos Anti-HIV/imunologia , Infecções por HIV/fisiopatologia , HIV-1/patogenicidade , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Masculino , Pessoa de Meia-Idade
2.
Nat Immunol ; 21(2): 199-209, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959979

RESUMO

A goal of HIV vaccine development is to elicit antibodies with neutralizing breadth. Broadly neutralizing antibodies (bNAbs) to HIV often have unusual sequences with long heavy-chain complementarity-determining region loops, high somatic mutation rates and polyreactivity. A subset of HIV-infected individuals develops such antibodies, but it is unclear whether this reflects systematic differences in their antibody repertoires or is a consequence of rare stochastic events involving individual clones. We sequenced antibody heavy-chain repertoires in a large cohort of HIV-infected individuals with bNAb responses or no neutralization breadth and uninfected controls, identifying consistent features of bNAb repertoires, encompassing thousands of B cell clones per individual, with correlated T cell phenotypes. These repertoire features were not observed during chronic cytomegalovirus infection in an independent cohort. Our data indicate that the development of numerous B cell lineages with antibody features associated with autoreactivity may be a key aspect in the development of HIV neutralizing antibody breadth.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia
3.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32887977

RESUMO

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Assuntos
Antígenos Virais/imunologia , Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Reino Unido , Vacinas Virais/imunologia
4.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37529926

RESUMO

Human immunodeficiency virus type 1 (HIV-1) causes a major burden on global health, and eradication of latent virus infection is one of the biggest challenges in the field. The circadian clock is an endogenous timing system that oscillates with a ~24 h period regulating multiple physiological processes and cellular functions, and we recently reported that the cell intrinsic clock regulates rhythmic HIV-1 replication. Salt inducible kinases (SIK) contribute to circadian regulatory networks, however, there is limited evidence for SIKs regulating HIV-1 infection. Here, we show that pharmacological inhibition of SIKs perturbed the cellular clock and reduced rhythmic HIV-1 replication in circadian synchronised cells. Further, SIK inhibitors or genetic silencing of Sik expression inhibited viral replication in primary cells and in a latency model, respectively. Overall, this study demonstrates a role for salt inducible kinases in regulating HIV-1 replication and latency reactivation, which can provide innovative routes to better understand and target latent HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Latência Viral/genética , Replicação Viral
5.
J Virol ; 96(10): e0043222, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475667

RESUMO

There is increasing evidence for the importance of human leukocyte antigen C (HLA-C)-restricted CD8+ T cells in HIV-1 control, but these responses are relatively poorly investigated. The number of HLA-C-restricted HIV-1 epitopes identified is much smaller than those of HLA-A-restricted or HLA-B-restricted ones. Here, we utilized a mass spectrometry-based approach to identify HIV-1 peptides presented by HLA-C*14:03 protective and HLA-C*14:02 nonprotective alleles. We identified 25 8- to 11-mer HLA-I-bound HIV-1 peptides from HIV-1-infected HLA-C*14:02+/14:03+ cells. Analysis of T cell responses to these peptides identified novel 6 T cell epitopes targeted in HIV-1-infected HLA-C*14:02+/14:03+ subjects. Analyses using HLA stabilization assays demonstrated that all 6 epitope peptides exhibited higher binding to and greater cell surface stabilization of HLA-C*14:02 than HLA-C*14:03. T cell response magnitudes were typically higher in HLA-C*14:02+ than HLA-C*14:03+ individuals, with responses to the Pol KM9 and Nef epitopes being significantly higher. The results show that HLA-C*14:02 can elicit stronger T cell responses to HIV-1 than HLA-C*14:03 and suggest that the single amino acid difference between these HLA-C14 subtypes at position 21, outside the peptide-binding groove, indirectly influences the stability of peptide-HLA-C*14 complexes and induction/expansion of HIV-specific T cells. Taken together with a previous finding that KIR2DL2+ NK cells recognized HLA-C*14:03+ HIV-1-infected cells more than HLA-C*14:02+ ones, the present study indicates that these HLA-C*14 subtypes differentially impact HIV-1 control by T cells and NK cells. IMPORTANCE Some human leukocyte antigen (HLA) class I alleles are associated with good clinical outcomes in HIV-1 infection and are called protective HLA alleles. Identification of T cell epitopes restricted by protective HLA alleles can give important insight into virus-immune system interactions and inform design of immune-based prophylactic/therapeutic strategies. Although epitopes restricted by many protective HLA-A/B alleles have been identified, protective HLA-C alleles are relatively understudied. Here, we identified 6 novel T cell epitopes presented by both HLA-C*14:02 (no association with protection) and HLA-C*14:03 (protective) using a mass spectrometry-based immunopeptidome profiling approach. We found that these peptides bound to and stabilized HLA-C*14:02 better than HLA-C*14:03 and observed differences in induction/expansion of epitope-specific T cell responses in HIV-infected HLA-C*14:02+ versus HLA-C*14:03+ individuals. These results enhance understanding of how the microstructural difference at position 21 between these HLA-C*14 subtypes may influence cellular immune responses involved in viral control in HIV-1 infection.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Soropositividade para HIV , Antígenos HLA-C , Alelos , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T , Infecções por HIV/imunologia , HIV-1 , Antígenos HLA-C/genética , Humanos , Peptídeos/metabolismo
6.
EMBO Rep ; 22(8): e52447, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34142428

RESUMO

Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.


Assuntos
COVID-19 , Vacinas contra Influenza , Vacinas de Partículas Semelhantes a Vírus , Animais , Humanos , Camundongos , Nucleotídeos Cíclicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus/genética
7.
Proc Natl Acad Sci U S A ; 116(49): 24748-24759, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31748275

RESUMO

Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/uso terapêutico , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Estudos de Coortes , Reações Cruzadas/imunologia , Conjuntos de Dados como Assunto , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Infecções por HIV/sangue , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Evasão da Resposta Imune , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Splicing de RNA/imunologia , RNA Viral/sangue , RNA Viral/genética , RNA Viral/isolamento & purificação , RNA-Seq , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
8.
Clin Infect Dis ; 73(5): 832-841, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33588436

RESUMO

BACKGROUND: Acute retroviral syndrome (ARS) is associated with human immunodeficiency virus type 1 (HIV-1) subtype and disease progression, but the underlying immunopathological pathways are poorly understood. We aimed to elucidate associations between innate immune responses during hyperacute HIV-1 infection (hAHI) and ARS. METHODS: Plasma samples obtained from volunteers (≥18.0 years) before and during hAHI, defined as HIV-1 antibody negative and RNA or p24 antigen positive, from Kenya, Rwanda, Uganda, Zambia, and Sweden were analyzed. Forty soluble innate immune markers were measured using multiplexed assays. Immune responses were differentiated into volunteers with stronger and comparatively weaker responses using principal component analysis. Presence or absence of ARS was defined based on 11 symptoms using latent class analysis. Logistic regression was used to determine associations between immune responses and ARS. RESULTS: Of 55 volunteers, 31 (56%) had ARS. Volunteers with stronger immune responses (n = 36 [65%]) had increased odds of ARS which was independent of HIV-1 subtype, age, and risk group (adjusted odds ratio, 7.1 [95% confidence interval {CI}: 1.7-28.8], P = .003). Interferon gamma-induced protein (IP)-10 was 14-fold higher during hAHI, elevated in 7 of the 11 symptoms and independently associated with ARS. IP-10 threshold >466.0 pg/mL differentiated stronger immune responses with a sensitivity of 84.2% (95% CI: 60.4-96.6) and specificity of 100.0% (95% CI]: 90.3-100.0). CONCLUSIONS: A stronger innate immune response during hAHI was associated with ARS. Plasma IP-10 may be a candidate biomarker of stronger innate immunity. Our findings provide further insights on innate immune responses in regulating ARS and may inform the design of vaccine candidates harnessing innate immunity.


Assuntos
Síndrome Retroviral Aguda , Infecções por HIV , HIV-1 , Quimiocina CXCL10 , Humanos , Imunidade Inata
9.
Br J Cancer ; 124(4): 817-830, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214684

RESUMO

BACKGROUND: Interferon (IFN) signalling pathways, a key element of the innate immune response, contribute to resistance to conventional chemotherapy, radiotherapy, and immunotherapy, and are often deregulated in cancer. The deubiquitylating enzyme USP18 is a major negative regulator of the IFN signalling cascade and is the predominant human protease that cleaves ISG15, a ubiquitin-like protein tightly regulated in the context of innate immunity, from its modified substrate proteins in vivo. METHODS: In this study, using advanced proteomic techniques, we have significantly expanded the USP18-dependent ISGylome and proteome in a chronic myeloid leukaemia (CML)-derived cell line. USP18-dependent effects were explored further in CML and colorectal carcinoma cellular models. RESULTS: Novel ISGylation targets were characterised that modulate the sensing of innate ligands, antigen presentation and secretion of cytokines. Consequently, CML USP18-deficient cells are more antigenic, driving increased activation of cytotoxic T lymphocytes (CTLs) and are more susceptible to irradiation. CONCLUSIONS: Our results provide strong evidence for USP18 in regulating antigenicity and radiosensitivity, highlighting its potential as a cancer target.


Assuntos
Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/imunologia , Citocinas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitinas/metabolismo , Variação Antigênica , Linhagem Celular Tumoral , Neoplasias Colorretais/radioterapia , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/radioterapia , Tolerância a Radiação/genética , Tolerância a Radiação/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética
10.
Immunol Rev ; 275(1): 62-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28133804

RESUMO

Induction of broadly neutralizing antibodies (bnAbs) capable of inhibiting infection with diverse variants of human immunodeficiency virus type 1 (HIV-1) is a key, as-yet-unachieved goal of prophylactic HIV-1 vaccine strategies. However, some HIV-infected individuals develop bnAbs after approximately 2-4 years of infection, enabling analysis of features of these antibodies and the immunological environment that enables their induction. Distinct subsets of CD4+ T cells play opposing roles in the regulation of humoral responses: T follicular helper (Tfh) cells support germinal center formation and provide help for affinity maturation and the development of memory B cells and plasma cells, while regulatory CD4+ (Treg) cells including T follicular regulatory (Tfr) cells inhibit the germinal center reaction to limit autoantibody production. BnAbs exhibit high somatic mutation frequencies, long third heavy-chain complementarity determining regions, and/or autoreactivity, suggesting that bnAb generation is likely to be highly dependent on the activity of CD4+ Tfh cells, and may be constrained by host tolerance controls. This review discusses what is known about the immunological environment during HIV-1 infection, in particular alterations in CD4+ Tfh, Treg, and Tfr populations and autoantibody generation, and how this is related to bnAb development, and considers the implications for HIV-1 vaccine design.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Linfócitos B/virologia , Anticorpos Anti-HIV/metabolismo , Humanos , Imunidade Humoral , Memória Imunológica , Subpopulações de Linfócitos T/virologia
11.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31217245

RESUMO

Despite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8+ T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale. Here, we employed an MS-based immunopeptidomic strategy to characterize HIV-1 peptides presented by a protective allele, HLA-C*12:02. We identified a total of 10,799 unique 8- to 12-mer peptides, including 15 HIV-1 peptides. The latter included 2 previously reported immunodominant HIV-1 epitopes, and analysis of T cell responses to the other HIV-1 peptides detected revealed an additional immunodominant epitope. These findings illustrate the utility of MS-based approaches for epitope definition and emphasize the capacity of HLA-C to present immunodominant T cell epitopes in HIV-infected individuals, indicating the importance of further evaluation of HLA-C-restricted responses to identify novel targets for HIV-1 prophylactic and therapeutic strategies.IMPORTANCE Mass spectrometry (MS)-based approaches are increasingly being employed for large-scale identification of HLA-bound peptides derived from pathogens, but only very limited profiling of the HIV-1 immunopeptidome has been conducted to date. Notably, a growing body of evidence has recently begun to indicate a protective role for HLA-C in HIV-1 infection, which may suggest that despite the fact that levels of HLA-C expression on both uninfected and HIV-1-infected cells are lower than those of HLA-A/B, HLA-C still presents epitopes to CD8+ T cells effectively. To explore this, we analyzed HLA-C*12:02-restricted HIV-1 peptides presented on HIV-1-infected cells expressing only HLA-C*12:02 (a protective allele) using liquid chromatography-tandem MS (LC-MS/MS). We identified a number of novel HLA-C*12:02-bound HIV-1 peptides and showed that although the majority of them did not elicit T cell responses during natural infection in a Japanese cohort, they included three immunodominant epitopes, emphasizing the contribution of HLA-C to epitope presentation on HIV-infected cells.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos HLA-C/metabolismo , Epitopos Imunodominantes/imunologia , Proteômica/métodos , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Cromatografia Líquida , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/isolamento & purificação , Infecções por HIV/virologia , HIV-1/química , Humanos , Epitopos Imunodominantes/isolamento & purificação , Camundongos , Espectrometria de Massas em Tandem
12.
Proc Natl Acad Sci U S A ; 114(4): E590-E599, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069935

RESUMO

Sexual transmission of HIV-1 is an inefficient process, with only one or few variants of the donor quasispecies establishing the new infection. A critical, and as yet unresolved, question is whether the mucosal bottleneck selects for viruses with increased transmission fitness. Here, we characterized 300 limiting dilution-derived virus isolates from the plasma, and in some instances genital secretions, of eight HIV-1 donor and recipient pairs. Although there were no differences in the amount of virion-associated envelope glycoprotein, recipient isolates were on average threefold more infectious (P = 0.0001), replicated to 1.4-fold higher titers (P = 0.004), were released from infected cells 4.2-fold more efficiently (P < 0.00001), and were significantly more resistant to type I IFNs than the corresponding donor isolates. Remarkably, transmitted viruses exhibited 7.8-fold higher IFNα2 (P < 0.00001) and 39-fold higher IFNß (P < 0.00001) half-maximal inhibitory concentrations (IC50) than did donor isolates, and their odds of replicating in CD4+ T cells at the highest IFNα2 and IFNß doses were 35-fold (P < 0.00001) and 250-fold (P < 0.00001) greater, respectively. Interestingly, pretreatment of CD4+ T cells with IFNß, but not IFNα2, selected donor plasma isolates that exhibited a transmitted virus-like phenotype, and such viruses were also detected in the donor genital tract. These data indicate that transmitted viruses are phenotypically distinct, and that increased IFN resistance represents their most distinguishing property. Thus, the mucosal bottleneck selects for viruses that are able to replicate and spread efficiently in the face of a potent innate immune response.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/fisiologia , Interferon Tipo I/imunologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Sêmen/virologia , Ducha Vaginal , Vírion , Replicação Viral
13.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021907

RESUMO

While prior studies have demonstrated that CD8 T cell responses to cryptic epitopes (CE) are readily detectable during HIV-1 infection, their ability to drive escape mutations following acute infection is unknown. We predicted 66 CE in a Zambian acute infection cohort based on escape mutations occurring within or near the putatively predicted HLA-I-restricted epitopes. The CE were evaluated for CD8 T cell responses for patients with chronic and acute HIV infections. Of the 66 predicted CE, 10 were recognized in 8/32 and 4/11 patients with chronic and acute infections, respectively. The immunogenic CE were all derived from a single antisense reading frame within pol However, when these CE were tested using longitudinal study samples, CE-specific T cell responses were detected but did not consistently select for viral escape mutations. Thus, while we demonstrated that CE are immunogenic in acute infection, the immune responses to CE are not major drivers of viral escape in the initial stages of HIV infection. The latter finding may be due to either the subdominant nature of CE-specific responses, the low antigen sensitivity, or the magnitude of CE responses during acute infections.IMPORTANCE Although prior studies demonstrated that cryptic epitopes of HIV-1 induce CD8 T cell responses, evidence that targeting these epitopes drives HIV escape mutations has been substantially limited, and no studies have addressed this question following acute infection. In this comprehensive study, we utilized longitudinal viral sequencing data obtained from three separate acute infection cohorts to predict potential cryptic epitopes based on HLA-I-associated viral escape. Our data show that cryptic epitopes are immunogenic during acute infection and that many of the responses they elicit are toward translation products of HIV-1 antisense reading frames. However, despite cryptic epitope targeting, our study did not find any evidence of early CD8-mediated immune escape. Nevertheless, improving cryptic epitope-specific CD8 T cell responses may still be beneficial in both preventative and therapeutic HIV-1 vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Evasão da Resposta Imune , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética , Doença Aguda , Adulto , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/virologia , Doença Crônica , Estudos de Coortes , Epitopos de Linfócito T/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Fases de Leitura , Transdução de Sinais , Carga Viral , Produtos do Gene pol do Vírus da Imunodeficiência Humana/imunologia
14.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167337

RESUMO

The well-characterized association between HLA-B*27:05 and protection against HIV disease progression has been linked to immunodominant HLA-B*27:05-restricted CD8+ T-cell responses toward the conserved Gag KK10 (residues 263 to 272) and polymerase (Pol) KY9 (residues 901 to 909) epitopes. We studied the impact of the 3 amino acid differences between HLA-B*27:05 and the closely related HLA-B*27:02 on the HIV-specific CD8+ T-cell response hierarchy and on immune control of HIV. Genetic epidemiological data indicate that both HLA-B*27:02 and HLA-B*27:05 are associated with slower disease progression and lower viral loads. The effect of HLA-B*27:02 appeared to be consistently stronger than that of HLA-B*27:05. In contrast to HLA-B*27:05, the immunodominant HIV-specific HLA-B*27:02-restricted CD8+ T-cell response is to a Nef epitope (residues 142 to 150 [VW9]), with Pol KY9 subdominant and Gag KK10 further subdominant. This selection was driven by structural differences in the F pocket, mediated by a polymorphism between these two HLA alleles at position 81. Analysis of autologous virus sequences showed that in HLA-B*27:02-positive subjects, all three of these CD8+ T-cell responses impose selection pressure on the virus, whereas in HLA-B*27:05-positive subjects, there is no Nef VW9-mediated selection pressure. These studies demonstrate that HLA-B*27:02 mediates protection against HIV disease progression that is at least as strong as or stronger than that mediated by HLA-B*27:05. In combination with the protective Gag KK10 and Pol KY9 CD8+ T-cell responses that dominate HIV-specific CD8+ T-cell activity in HLA-B*27:05-positive subjects, a Nef VW9-specific response is additionally present and immunodominant in HLA-B*27:02-positive subjects, mediated through a polymorphism at residue 81 in the F pocket, that contributes to selection pressure against HIV.IMPORTANCE CD8+ T cells play a central role in successful control of HIV infection and have the potential also to mediate the eradication of viral reservoirs of infection. The principal means by which protective HLA class I molecules, such as HLA-B*27:05 and HLA-B*57:01, slow HIV disease progression is believed to be via the particular HIV-specific CD8+ T cell responses restricted by those alleles. We focus here on HLA-B*27:05, one of the best-characterized protective HLA molecules, and the closely related HLA-B*27:02, which differs by only 3 amino acids and which has not been well studied in relation to control of HIV infection. We show that HLA-B*27:02 is also protective against HIV disease progression, but the CD8+ T-cell immunodominance hierarchy of HLA-B*27:02 differs strikingly from that of HLA-B*27:05. These findings indicate that the immunodominant HLA-B*27:02-restricted Nef response adds to protection mediated by the Gag and Pol specificities that dominate anti-HIV CD8+ T-cell activity in HLA-B*27:05-positive subjects.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Antígeno HLA-B27/genética , Epitopos Imunodominantes/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Genes MHC Classe I , Infecções por HIV/virologia , HIV-1 , Humanos , Carga Viral
15.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835490

RESUMO

Epstein-Barr virus (EBV) is typically acquired asymptomatically in childhood. In contrast, infection later in life often leads to infectious mononucleosis (IM), a febrile illness characterized by anti-EBV IgM antibody positivity, high loads of circulating latently infected B cells, and a marked lymphocytosis caused by hyperexpansion of EBV-specific CD8+ T cells plus a milder expansion of CD56dim NKG2A+ KIR- natural killer (NK) cells. How the two situations compare is unclear due to the paucity of studies on clinically silent infection. Here we describe five prospectively studied patients with asymptomatic infections identified in a seroepidemiologic survey of university entrants. In each case, the key blood sample had high cell-associated viral loads without a marked CD8 lymphocytosis or NK cell disturbance like those seen in patients during the acute phase of IM. Two of the cases with the highest viral loads showed a coincident expansion of activated EBV-specific CD8+ T cells, but overall CD8+ T cell numbers were either unaffected or only mildly increased. Two cases with slightly lower loads, in whom serology suggests the infection may have been caught earlier in the course of infection, also showed no T or NK cell expansion at the time. Interestingly, in another case with a higher viral load, in which T and NK cell responses were undetectable in the primary blood sample in which infection was detected, EBV-specific T cell responses did not appear until several months later, by which time the viral loads in the blood had already fallen. Thus, some patients with asymptomatic primary infections have very high circulating viral loads similar to those in patients during the acute phase of IM and a cell-mediated immune response that is qualitatively similar to that in IM patients but of a lower magnitude. However, other patients may have quite different immune responses that ultimately could reveal novel mechanisms of host control.IMPORTANCE Epstein-Barr virus (EBV) is transmitted orally, replicates in the throat, and then invades the B lymphocyte pool through a growth-transforming latent infection. While primary infection in childhood is usually asymptomatic, delayed infection is associated with infectious mononucleosis (IM), a febrile illness in which patients have high circulating viral loads and an exaggerated virus-induced immune response involving both CD8+ T cells and natural killer (NK) cells. Here we show that in five cases of asymptomatic infection, viral loads in the blood were as high as those in patients during the acute phase of IM, whereas the cell-mediated responses, even when they resembled those in patients during the acute phase of IM in timing and quality, were never as exaggerated. We infer that IM symptoms arise as a consequence not of the virus infection per se but of the hyperactivated immune response. Interestingly, there were idiosyncratic differences among asymptomatic cases in the relationship between the viral load and the response kinetics, emphasizing how much there is still to learn about primary EBV infection.


Assuntos
Infecções Assintomáticas/epidemiologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/virologia , Células Matadoras Naturais/imunologia , Adulto , Anticorpos Antivirais/sangue , DNA Viral/genética , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/isolamento & purificação , Humanos , Masculino , Prognóstico , Estudos Prospectivos , Reino Unido/epidemiologia , Carga Viral , Adulto Jovem
16.
J Immunol ; 197(4): 1242-51, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412417

RESUMO

There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag-specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert-specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas-despite a robust overall GC response-the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses.


Assuntos
Adenoviridae/imunologia , Adjuvantes Imunológicos/farmacologia , Linfócitos B/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas Virais/imunologia , Animais , Antígenos/imunologia , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Vetores Genéticos , Centro Germinativo/imunologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
17.
Eur J Immunol ; 46(1): 60-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26467324

RESUMO

Recognition and eradication of infected cells by cytotoxic T lymphocytes is a key defense mechanism against intracellular pathogens. High-throughput definition of HLA class I-associated immunopeptidomes by mass spectrometry is an increasingly important analytical tool to advance our understanding of the induction of T-cell responses against pathogens such as HIV-1. We utilized a liquid chromatography tandem mass spectrometry workflow including de novo-assisted database searching to define the HLA class I-associated immunopeptidome of HIV-1-infected human cells. We here report for the first time the identification of 75 HIV-1-derived peptides bound to HLA class I complexes that were purified directly from HIV-1-infected human primary CD4(+) T cells and the C8166 human T-cell line. Importantly, one-third of eluted HIV-1 peptides had not been previously known to be presented by HLA class I. Over 82% of the identified sequences originated from viral protein regions for which T-cell responses have previously been reported but for which the precise HLA class I-binding sequences have not yet been defined. These results validate and expand the current knowledge of virus-specific antigenic peptide presentation during HIV-1 infection and provide novel targets for T-cell vaccine development.


Assuntos
Antígenos Virais/imunologia , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Linfócitos T Citotóxicos/imunologia , Espectrometria de Massas em Tandem
18.
J Virol ; 90(22): 10339-10350, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630228

RESUMO

Acute human immunodeficiency virus (HIV) infection represents a period of intense immune perturbation and activation of the host immune system. Study of the eclipse and viral expansion phases of infection is difficult in humans, but studies in nonprogressive and progressive nonhuman primate (NHP) infection models can provide significant insight into critical events occurring during this time. Cytokines, chemokines, and other soluble immune factors were measured in longitudinal samples from rhesus macaques infected with either SIVmac251 (progressive infection) or SIVmac239Δnef (attenuated/nonprogressive infection) and from African green monkeys infected with SIVsab9315BR (nonpathogenic infection). Levels of acute-phase peak viral replication were highest in SIVmac251 infection but correlated positively with viremia at 3 months postinfection in all three infection models. SIVmac251 infection was associated with stronger corresponding acute-phase cytokine/chemokine responses than the nonprogressive infections. The production of interleukin 15 (IL-15), IL-18, gamma interferon (IFN-γ), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1ß (MIP-1ß), and serum amyloid A protein (SAA) during acute SIVmac251 infection, but not during SIVmac239Δnef or SIVsab9315BR infection, correlated positively with chronic viremia at 3 months postinfection. Acute-phase production of MCP-1 correlated with viremia at 3 months postinfection in both nonprogressive infections. Finally, a positive correlation between the acute-phase area under the curve (AUC) for IL-6 and soluble CD40 ligand (sCD40L) and chronic viremia was observed only for the nonprogressive infection models. While we observed dynamic acute inflammatory immune responses in both progressive and nonprogressive SIV infections, the responses in the nonprogressive infections were not only lower in magnitude but also qualitatively different biomarkers of disease progression. IMPORTANCE: NHP models of HIV infection constitute a powerful tool with which to study viral pathogenesis in order to gain critical information for a better understanding of HIV infection in humans. Here we studied progressive and nonprogressive simian immunodeficiency virus (SIV) infection models in both natural and nonnatural host NHP species. Regardless of the pathogenicity of the virus infection and regardless of the NHP species studied, the magnitude of viremia, as measured by area under the curve, during the first 4 weeks of infection correlated positively with viremia in chronic infection. The magnitude of cytokine and chemokine responses during primary infection also correlated positively with both acute-phase and chronic viremia. However, the pattern and levels of specific cytokines and chemokines produced differed between nonprogressive and progressive SIV infection models. The qualitative differences in the early immune response in pathogenic and nonpathogenic infections identified here may be important determinants of the subsequent disease course.


Assuntos
Quimiocinas/imunologia , Citocinas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Doença Aguda , Animais , HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Inflamação/imunologia , Inflamação/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Primatas , Viremia/imunologia , Viremia/virologia
19.
PLoS Pathog ; 11(9): e1005154, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26378795

RESUMO

Heterosexual transmission of HIV-1 is characterized by a genetic bottleneck that selects a single viral variant, the transmitted/founder (TF), during most transmission events. To assess viral characteristics influencing HIV-1 transmission, we sequenced 167 near full-length viral genomes and generated 40 infectious molecular clones (IMC) including TF variants and multiple non-transmitted (NT) HIV-1 subtype C variants from six linked heterosexual transmission pairs near the time of transmission. Consensus-like genomes sensitive to donor antibodies were selected for during transmission in these six transmission pairs. However, TF variants did not demonstrate increased viral fitness in terms of particle infectivity or viral replicative capacity in activated peripheral blood mononuclear cells (PBMC) and monocyte-derived dendritic cells (MDDC). In addition, resistance of the TF variant to the antiviral effects of interferon-α (IFN-α) was not significantly different from that of non-transmitted variants from the same transmission pair. Thus neither in vitro viral replicative capacity nor IFN-α resistance discriminated the transmission potential of viruses in the quasispecies of these chronically infected individuals. However, our findings support the hypothesis that within-host evolution of HIV-1 in response to adaptive immune responses reduces viral transmission potential.


Assuntos
Farmacorresistência Viral , Variação Genética , Infecções por HIV/transmissão , Soropositividade para HIV/transmissão , HIV-1/fisiologia , Interferon-alfa/farmacologia , Replicação Viral , Antivirais/farmacologia , Células Cultivadas , Estudos de Coortes , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Características da Família , Feminino , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Soropositividade para HIV/imunologia , Soropositividade para HIV/patologia , Soropositividade para HIV/virologia , HIV-1/classificação , HIV-1/efeitos dos fármacos , HIV-1/genética , Heterossexualidade , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/virologia , Masculino , Dados de Sequência Molecular , Tipagem Molecular , Filogenia , Vírion/classificação , Vírion/efeitos dos fármacos , Vírion/genética , Vírion/fisiologia , Internalização do Vírus/efeitos dos fármacos , Zâmbia
20.
PLoS Pathog ; 11(1): e1004565, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569444

RESUMO

Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.


Assuntos
Aptidão Genética , Infecções por HIV/diagnóstico , HIV-1/genética , HIV-1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Linfócitos T/imunologia , Adulto , Sequência de Aminoácidos , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Evolução Molecular , Feminino , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/transmissão , Interações Hospedeiro-Patógeno/genética , Humanos , Evasão da Resposta Imune/genética , Masculino , Dados de Sequência Molecular , Filogenia , Prognóstico , Carga Viral/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA