Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biometals ; 36(2): 255-261, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171432

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium which can cause serious infections among immune-depressed people including cystic fibrosis patients where it can colonize the lungs causing chronic infections. Iron is essential for P. aeruginosa and can be provided via three sources under aerobic conditions: its own siderophores pyochelin (PCH) and pyoverdine (PVD), xenosiderophores, or heme, respectively. Pyoverdine is the high affinity siderophore and its synthesis and uptake involve more than 30 genes organized in different operons. Its synthesis and uptake are triggered by iron scarcity via the Fur regulator and involves two extra cytoplasmic sigma factors (ECF), PvdS for the biosynthesis of PVD and FpvI for the uptake via the TonB-dependent FpvA outer membrane transporter and other periplasmic and inner membrane proteins. It appeared recently that the regulation of PVD biosynthesis and uptake involves other regulators, including other ECF factors, and LysR regulators. This is the case especially for the genes coding for periplasmic and inner membrane proteins involved in the reduction of Fe3+ to Fe2+ and the transport of ferrous iron to the cytoplasm that appears to represent a crucial step in the uptake process.


Assuntos
Proteínas da Membrana Bacteriana Externa , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/genética , Ferro/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
J Proteome Res ; 21(6): 1392-1407, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482949

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen highly resistant to a wide range of antimicrobial agents, making its infections very difficult to treat. Since microorganisms need to perpetually adapt to their surrounding environment, understanding the effect of carbon sources on P. aeruginosa physiology is therefore essential to avoid increasing drug-resistance and better fight this pathogen. By a global proteomic approach and phenotypic assays, we investigated the impact of various carbon source supplementations (glucose, glutamate, succinate, and citrate) on the physiology of the P. aeruginosa PA14 strain. A total of 581 proteins were identified as differentially expressed in the 4 conditions. Most of them were more abundant in citrate supplementation and were involved in virulence, motility, biofilm development, and antibiotic resistance. Phenotypic assays were performed to check these hypotheses. By coupling all this data, we highlight the importance of the environment in which the bacterium evolves on its metabolism, and thus the necessity to better understand the metabolic pathways implied in its adaptative response according to the nutrient availability.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , Biofilmes , Carbono/metabolismo , Citratos/metabolismo , Citratos/farmacologia , Suplementos Nutricionais , Humanos , Proteômica , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
3.
Adv Exp Med Biol ; 1386: 147-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258072

RESUMO

Bacteria sense their environment via the cell envelope, which in Gram-negative bacteria comprises the outer membrane, the periplasmic space, and the inner membrane. Pseudomonas aeruginosa is an opportunistic pathogen which is exposed to different cell wall stresses imposed by exposure to antibiotics, osmotic pressure, and long-time colonization of host tissues such as the lung in cystic fibrosis patients. In response to these stresses, P. aeruginosa is able to respond by establishing a cell envelope stress response involving different regulatory pathways including the extra-cytoplasmic sigma factors AlgU, SigX, and SbrI and other two-component sensor/response regulators and effectors. This chapter aims to review the different factors leading to the activation of the cell envelope stress response in P. aeruginosa and the genetic determinants involved in this response, which is crucial for the survival of the bacterium upon exposure to different stressful conditions.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Humanos , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrose Cística/microbiologia , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico
4.
Microbiol Spectr ; 12(4): e0230323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411953

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.


Assuntos
Infecções por Pseudomonas , Tobramicina , Humanos , Tobramicina/farmacologia , Pseudomonas aeruginosa , Fluidez de Membrana , Fator sigma/genética , Fator sigma/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Biofilmes , Homeostase
5.
Biofilm ; 7: 100191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544741

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance: CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.

6.
BMC Microbiol ; 13: 123, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23718251

RESUMO

BACKGROUND: The genus Pseudomonas includes a heterogeneous set of microorganisms that can be isolated from many different niches and nearly 100 different strains have been described. The best characterized bacterium is Pseudomonas aeruginosa which is the primary agent of opportunistic infection in humans, causing both acute and chronic infections. Other species like fluorescens, putida or mosselii have been sporadically isolated from hospitalized patients but their association with the pathology often remains unclear. RESULTS: This study focuses on the cytotoxicity and inflammatory potential of two strains of Pseudomonas mosselii (ATCC BAA-99 and MFY161) that were recently isolated from clinical samples of hospitalized patients. The behavior of these bacteria was compared to that of the well-known opportunistic pathogen P. aeruginosa PAO1. We found that P. mosselii ATCC BAA-99 and MFY161 are cytotoxic towards Caco-2/TC7 cells, have low invasive capacity, induce secretion of human ß-defensin 2 (HBD-2), alter the epithelial permeability of differentiated cells and damage the F-actin cytoskeleton. CONCLUSIONS: These data bring new insights into P. mosselii virulence, since this bacterium has often been neglected due to its rare occurrence in hospital.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas/patogenicidade , Actinas/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Endocitose , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Hospitais , Humanos , Pseudomonas/isolamento & purificação , Virulência , beta-Defensinas/metabolismo
7.
Biofilm ; 5: 100131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37252226

RESUMO

Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.

8.
J Bacteriol ; 194(16): 4301-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685281

RESUMO

The OprF porin is the major outer membrane protein of Pseudomonas aeruginosa. OprF is involved in several crucial functions, including cell structure, outer membrane permeability, environmental sensing, and virulence. The oprF gene is preceded by the sigX gene, which encodes the poorly studied extracytoplasmic function (ECF) sigma factor SigX. Three oprF promoters were previously identified. Two intertwined promoters dependent on σ(70) and SigX are located in the sigX-oprF intergenic region, whereas a promoter dependent on the ECF AlgU lies within the sigX gene. An additional promoter was found in the cmpX-sigX intergenic region. In this study, we dissected the contribution of each promoter region and of each sigma factor to oprF transcription using transcriptional fusions. In Luria-Bertani (LB) medium, the oprF-proximal region (sigX-oprF intergenic region) accounted for about 80% of the oprF transcription, whereas the AlgU-dependent promoter had marginal activity. Using the sigX mutant PAOSX, we observed that the SigX-dependent promoter was largely predominant over the σ(70)-dependent promoter. oprF transcription was increased in response to low NaCl or high sucrose concentrations, and this induced transcription was strongly impaired in the absence of SigX. The lack of OprF itself increased oprF transcription. Since these conditions led to cell wall alterations, oprF transcription could be activated by signals triggered by perturbation of the cell envelope.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Fator sigma/metabolismo , Sacarose/metabolismo , Transcrição Gênica , Ativação Transcricional , Meios de Cultura/química , Deleção de Genes , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Fator sigma/deficiência , Cloreto de Sódio/metabolismo
9.
Antimicrob Agents Chemother ; 56(7): 3826-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22564848

RESUMO

The increasing number of carbapenem-resistant Acinetobacter baumannii isolates is a major cause for concern which restricts therapeutic options to treat severe infections caused by this emerging pathogen. To identify the molecular mechanisms involved in carbapenem resistance, we studied the contribution of an outer membrane protein homologue of the Pseudomonas aeruginosa OprD porin. Suspected to be the preferred pathway of carbapenems in A. baumannii, the oprD homologue gene was inactivated in strain ATCC 17978. Comparison of wild-type and mutant strains did not confirm the expected increased resistance to any antibiotic tested. OprD homologue sequence analysis revealed that this protein actually belongs to an OprD subgroup but is closer to the P. aeruginosa OprQ protein, with which it could share some functions, e.g., allowing bacterial survival under low-iron or -magnesium growth conditions or under poor oxygenation. We thus overexpressed and purified a recombinant OprD homologue protein to further examine its functional properties. As a specific channel, this porin presented rather low single-channel conductance, i.e., 28 pS in 1 M KCl, and was partially closed by micro- and millimolar concentrations of Fe(3+) and Mg(2+), respectively, but not by imipenem and meropenem or basic amino acids. The A. baumannii OprD homologue is likely not involved in the carbapenem resistance mechanism, but as an OprQ-like protein, it could contribute to the adaptation of this bacterium to magnesium- and/or iron-depleted environments.


Assuntos
Acinetobacter baumannii/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Bleomicina/farmacologia , Canamicina/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Nat Struct Mol Biol ; 14(5): 441-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17435766

RESUMO

H-NS is a protein of the bacterial nucleoid involved in DNA compaction and transcription regulation. In vivo, H-NS selectively silences specific genes of the bacterial chromosome. However, many studies have concluded that H-NS binds sequence-independently to DNA, leaving the molecular basis for its selectivity unexplained. We show that the negative regulatory element (NRE) of the supercoiling-sensitive Escherichia coliproU gene contains two identical high-affinity binding sites for H-NS. Cooperative binding of H-NS is abrogated by changes in DNA superhelical density and temperature. We further demonstrate that the high-affinity sites nucleate cooperative binding and establish a nucleoprotein structure required for silencing. Mutations in these sites result in loss of repression by H-NS. In this model, silencing at proU, and by inference at other genes directly regulated by H-NS, is tightly controlled by the cooperativity between bound H-NS molecules.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Elementos Reguladores de Transcrição , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Mutação/fisiologia , Ligação Proteica , Transcrição Gênica
11.
Microbiol Spectr ; 10(5): e0154822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036571

RESUMO

Pf4 is a filamentous bacteriophage integrated as a prophage into the genome of Pseudomonas aeruginosa PAO1. Pf4 virions can be produced without killing P. aeruginosa. However, cell lysis can occur during superinfection when Pf virions successfully infect a host lysogenized by a Pf superinfective variant. We have previously shown that infection of P. aeruginosa PAO1 with a superinfective Pf4 variant abolished twitching motility and altered biofilm architecture. More precisely, most of the cells embedded into the biofilm were showing a filamentous morphology, suggesting the activation of the cell envelope stress response involving both AlgU and SigX extracytoplasmic function sigma factors. Here, we show that Pf4 variant infection results in a drastic dysregulation of 3,360 genes representing about 58% of P. aeruginosa genome; of these, 70% of the virulence factors encoding genes show a dysregulation. Accordingly, Pf4 variant infection (termed Pf4*) causes in vivo reduction of P. aeruginosa virulence and decreased production of N-acyl-homoserine lactones and 2-alkyl-4-quinolones quorum-sensing molecules and related virulence factors, such as pyocyanin, elastase, and pyoverdine. In addition, the expression of genes involved in metabolism, including energy generation and iron homeostasis, was affected, suggesting further relationships between virulence and central metabolism. Altogether, these data show that Pf4 phage variant infection results in complex network dysregulation, leading to reducing acute virulence in P. aeruginosa. This study contributes to the comprehension of the bacterial response to filamentous phage infection. IMPORTANCE Filamentous bacteriophages can become superinfective and infect P. aeruginosa, even though they are inserted in the genome as lysogens. Despite this productive infection, growth of the host is only mildly affected, allowing the study of the interaction between the phage and the host, which is not possible in the case of lytic phages killing rapidly their host. Here, we demonstrate by transcriptome and phenotypic analysis that the infection by a superinfective filamentous phage variant causes a massive disruption in gene expression, including those coding for virulence factors and metabolic pathways.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulência , Piocianina/metabolismo , Bacteriófagos/genética , Acil-Butirolactonas/metabolismo , Percepção de Quorum , Biofilmes , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ferro/metabolismo , Elastase Pancreática/metabolismo , 4-Quinolonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Adv Sci (Weinh) ; 9(7): e2103262, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032112

RESUMO

Pseudomonas aeruginosa biofilms cause chronic, antibiotic tolerant infections in wounds and lungs. Numerous recent studies demonstrate that bacteria can detect human communication compounds through specific sensor/receptor tools that modulate bacterial physiology. Consequently, interfering with these mechanisms offers an exciting opportunity to directly affect the infection process. It is shown that the human hormone Atrial Natriuretic Peptide (hANP) both prevents the formation of P. aeruginosa biofilms and strongly disperses established P. aeruginosa biofilms. This hANP action is dose-dependent with a strong effect at low nanomolar concentrations and takes effect in 30-120 min. Furthermore, although hANP has no antimicrobial effect, it acts as an antibiotic adjuvant. hANP enhances the antibiofilm action of antibiotics with diverse modes of action, allowing almost full biofilm eradication. The hANP effect requires the presence of the P. aeruginosa sensor AmiC and the AmiR antiterminator regulator, indicating a specific mode of action. These data establish the activation of the ami pathway as a potential mechanism for P. aeruginosa biofilm dispersion. hANP appears to be devoid of toxicity, does not enhance bacterial pathogenicity, and acts synergistically with antibiotics. These data show that hANP is a promising powerful antibiofilm weapon against established P. aeruginosa biofilms in chronic infections.


Assuntos
Fator Natriurético Atrial , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Fator Natriurético Atrial/metabolismo , Fator Natriurético Atrial/farmacologia , Biofilmes , Humanos , Pseudomonas aeruginosa/metabolismo , Virulência
13.
Microorganisms ; 10(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36144390

RESUMO

Phthalates are used in a variety of applications-for example, as plasticizers in polyvinylchloride products to improve their flexibility-and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.

14.
Infect Immun ; 79(3): 1176-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21189321

RESUMO

OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/fisiologia , Células CACO-2 , Caenorhabditis elegans , Cichorium intybus , Humanos , Folhas de Planta/microbiologia , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/fisiologia , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fatores de Virulência/genética
15.
J Bacteriol ; 192(12): 3001-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20348252

RESUMO

The extracytoplasmic function sigma factor AlgU of Pseudomonas aeruginosa is responsible for alginate overproduction, leading to mucoidy and chronic infections of cystic fibrosis patients. We investigated here the role of AlgU in the formation of nonmucoid biofilms. The algU mutant of P. aeruginosa PAO1 (PAOU) showed a dramatic impairment in biofilm formation under dynamic conditions. PAOU was defective both in cell attachment to glass and in development of robust, shear-resistant biofilms. This was explained by an impaired production of extracellular matrix, specifically of the exopolysaccharide Psl, as revealed by microscopy and enzyme-linked immunosorbent assay. Complementing the algU mutation with a plasmid-borne algU gene restored wild-type phenotypes. Compared with that in PAO1, expression of the psl operon was reduced in the PAOU strain, and the biofilm formation ability of this strain was partially restored by inducing the transcription of the psl operon. Furthermore, expression of the lectin-encoding lecA and lecB genes was reduced in the PAOU strain. In agreement with the requirement of LecB for type IV pilus biogenesis, PAOU displayed impaired twitching motility. Collectively, these genetic downregulation events explain the biofilm formation defect of the PAOU mutant. Promoter mapping indicated that AlgU is probably not directly responsible for transcription of the psl operon and the lec genes, but AlgU is involved in the expression of the ppyR gene, whose product was reported to positively control psl expression. Expressing the ppyR gene in PAOU partially restored the formation of robust biofilms.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/fisiologia , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Lectinas , Mutação , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/ultraestrutura , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Fator sigma/genética
16.
Biomolecules ; 10(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276611

RESUMO

Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which are known to be tightly regulated by the quorum sensing (QS) system. Anti-virulence therapy has been adopted as an innovative alternative approach to circumvent bacterial antibiotic resistance. Since plants are known repositories of natural phytochemicals, herein, we explored the anti-virulence potential of Azorella atacamensis, a medicinal plant from the Taira Atacama community (Calama, Chile), against P. aeruginosa. Interestingly, A. atacamensis extract (AaE) conferred a significant protection for human lung cells and Caenorhabditis elegans nematodes towards P. aeruginosa pathogenicity. The production of key virulence factors was decreased upon AaE exposure without affecting P. aeruginosa growth. In addition, AaE was able to decrease QS-molecules production. Furthermore, metabolite profiling of AaE and its derived fractions achieved by combination of a molecular network and in silico annotation allowed the putative identification of fourteen diterpenoids bearing a mulinane-like skeleton. Remarkably, this unique interesting group of diterpenoids seems to be responsible for the interference with virulence factors as well as on the perturbation of membrane homeostasis of P. aeruginosa. Hence, there was a significant increase in membrane stiffness, which appears to be modulated by the cell wall stress response ECFσ SigX, an extracytoplasmic function sigma factor involved in membrane homeostasis as well as P. aeruginosa virulence.


Assuntos
Antibacterianos/farmacologia , Apiaceae/química , Diterpenos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Virulência/efeitos dos fármacos
17.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896640

RESUMO

Biofilms produced by Pseudomonas aeruginosa present a serious threat to cystic fibrosis patients. Here, we report the draft genome sequences of four cystic fibrosis isolates displaying various mucoid and biofilm phenotypes. The estimated average genome size was about 6,255,986 ± 50,202 bp with a mean G+C content of 66.52 ± 0.06%.

18.
Microorganisms ; 8(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143386

RESUMO

Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.

19.
Front Microbiol ; 11: 1068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528451

RESUMO

Pseudomonas aeruginosa is capable to deploy a collection of virulence factors that are not only essential for host infection and persistence, but also to escape from the host immune system and to become more resistant to drug therapies. Thus, developing anti-virulence agents that may directly counteract with specific virulence factors or disturb higher regulatory pathways controlling the production of virulence armories are urgently needed. In this regard, this study reports that Pistacia lentiscus L. fruit cyclohexane extract (PLFE1) thwarts P. aeruginosa virulence by targeting mainly the pyocyanin pigment production by interfering with 4-hydroxy-2-alkylquinolines molecules production. Importantly, the anti-virulence activity of PLFE1 appears to be associated with membrane homeostasis alteration through the modulation of SigX, an extracytoplasmic function sigma factor involved in cell wall stress response. A thorough chemical analysis of PLFE1 allowed us to identify the ginkgolic acid (C17:1) and hydroginkgolic acid (C15:0) as the main bioactive membrane-interactive compounds responsible for the observed increased membrane stiffness and anti-virulence activity against P. aeruginosa. This study delivers a promising perspective for the potential future use of PLFE1 or ginkgolic acid molecules as an adjuvant therapy to fight against P. aeruginosa infections.

20.
Front Microbiol ; 11: 579495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193206

RESUMO

Pseudomonas aeruginosa is a highly adaptable Gram-negative opportunistic pathogen, notably due to its large number of transcription regulators. The extracytoplasmic sigma factor (ECFσ) AlgU, responsible for alginate biosynthesis, is also involved in responses to cell wall stress and heat shock via the RpoH alternative σ factor. The SigX ECFσ emerged as a major regulator involved in the envelope stress response via membrane remodeling, virulence and biofilm formation. However, their functional interactions to coordinate the envelope homeostasis in response to environmental variations remain to be determined. The regulation of the putative cmaX-cfrX-cmpX operon located directly upstream sigX was investigated by applying sudden temperature shifts from 37°C. We identified a SigX- and an AlgU- dependent promoter region upstream of cfrX and cmaX, respectively. We show that cmaX expression is increased upon heat shock through an AlgU-dependent but RpoH independent mechanism. In addition, the ECFσ SigX is activated in response to valinomycin, an agent altering the membrane structure, and up-regulates cfrX-cmpX transcription in response to cold shock. Altogether, these data provide new insights into the regulation exerted by SigX and networks that are involved in maintaining envelope homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA