Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(17): 173802, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728718

RESUMO

In this Letter, we theoretically propose and experimentally demonstrate the formation of a super bound state in a continuum (BIC) on a photonic crystal flat band. This unique state simultaneously exhibits an enhanced quality factor and near-zero group velocity across an extended region of the Brillouin zone. It is achieved at the topological transition when a symmetry-protected BIC pinned at k=0 merges with two Friedrich-Wintgen quasi-BICs, which arise from the destructive interference between lossy photonic modes of opposite symmetries. As a proof of concept, we employ the ultraflat super BIC to demonstrate three-dimensional optical trapping of individual particles. Our findings present a novel approach to engineering both the real and imaginary components of photonic states on a subwavelength scale for innovative optoelectronic devices.

2.
Opt Express ; 28(26): 39739-39749, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379517

RESUMO

Random lasing is an intriguing phenomenon occurring in disordered structures with optical gain in which light scattering provides the necessary feedback for lasing action. Unlike conventional lasers, random lasing systems emit in all directions due to light scattering. While this property can be desired in some cases, directional emission remains required for most applications. In a vertical microcavity containing the hybrid perovskite CH3NH3PbBr3, we report here the coupling of the emission of a random laser with a cavity polaritonic resonance, resulting in a directional random lasing, whose emission angles can be tuned by varying the cavity detuning and reach values as large as 15.8° and 22.4°.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA