Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 477(18): 3599-3612, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32869839

RESUMO

Among the major challenges in the development of biopharmaceuticals are structural heterogeneity and aggregation. The development of a successful therapeutic monoclonal antibody (mAb) requires both a highly active and also stable molecule. Whilst a range of experimental (biophysical) approaches exist to track changes in stability of proteins, routine prediction of stability remains challenging. The fluorescence red edge excitation shift (REES) phenomenon is sensitive to a range of changes in protein structure. Based on recent work, we have found that quantifying the REES effect is extremely sensitive to changes in protein conformational state and dynamics. Given the extreme sensitivity, potentially this tool could provide a 'fingerprint' of the structure and stability of a protein. Such a tool would be useful in the discovery and development of biopharamceuticals and so we have explored our hypothesis with a panel of therapeutic mAbs. We demonstrate that the quantified REES data show remarkable sensitivity, being able to discern between structurally identical antibodies and showing sensitivity to unfolding and aggregation. The approach works across a broad concentration range (µg-mg/ml) and is highly consistent. We show that the approach can be applied alongside traditional characterisation testing within the context of a forced degradation study (FDS). Most importantly, we demonstrate the approach is able to predict the stability of mAbs both in the short (hours), medium (days) and long-term (months). The quantified REES data will find immediate use in the biopharmaceutical industry in quality assurance, formulation and development. The approach benefits from low technical complexity, is rapid and uses instrumentation which exists in most biochemistry laboratories without modification.


Assuntos
Anticorpos Monoclonais/química , Conformação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência
2.
Anal Chem ; 92(15): 10381-10389, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32614170

RESUMO

Monoclonal antibodies (mAbs) represent a rapidly expanding market for biotherapeutics. Structural changes in the mAb can lead to unwanted immunogenicity, reduced efficacy, and loss of material during production. The pharmaceutical sector requires new protein characterization tools that are fast, applicable in situ and to the manufacturing process. Raman has been highlighted as a technique to suit this application as it is information-rich, minimally invasive, insensitive to water background and requires little to no sample preparation. This study investigates the applicability of Raman to detect Post-Translational Modifications (PTMs) and degradation seen in mAbs. IgG4 molecules have been incubated under a range of conditions known to result in degradation of the therapeutic including varied pH, temperature, agitation, photo, and chemical stresses. Aggregation was measured using size-exclusion chromatography, and PTM levels were calculated using peptide mapping. By combining principal component analysis (PCA) with Raman spectroscopy and circular dichroism (CD) spectroscopy structural analysis we were able to separate proteins based on PTMs and degradation. Furthermore, by identifying key bands that lead to the PCA separation we could correlate spectral peaks to specific PTMs. In particular, we have identified a peak which exhibits a shift in samples with higher levels of Trp oxidation. Through separation of IgG4 aggregates, by size, we have shown a linear correlation between peak wavenumbers of specific functional groups and the amount of aggregate present. We therefore demonstrate the capability for Raman spectroscopy to be used as an analytical tool to measure degradation and PTMs in-line with therapeutic production.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Processamento de Proteína Pós-Traducional , Análise Espectral Raman/métodos , Anticorpos Monoclonais/genética , Dicroísmo Circular , Humanos , Imunoglobulina G/genética , Mapeamento de Peptídeos , Conformação Proteica
3.
Biochim Biophys Acta ; 1838(12): 3036-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25157670

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA