Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(22): e2206842, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36794297

RESUMO

Many biological materials exhibit a multiscale porosity with small, mostly nanoscale pores as well as large, macroscopic capillaries to simultaneously achieve optimized mass transport capabilities and lightweight structures with large inner surfaces. Realizing such a hierarchical porosity in artificial materials necessitates often sophisticated and expensive top-down processing that limits scalability. Here, an approach that combines self-organized porosity based on metal-assisted chemical etching (MACE) with photolithographically induced macroporosity for the synthesis of single-crystalline silicon with a bimodal pore-size distribution is presented, i.e., hexagonally arranged cylindrical macropores with 1 µm diameter separated by walls that are traversed by pores 60 nm across. The MACE process is mainly guided by a metal-catalyzed reduction-oxidation reaction, where silver nanoparticles (AgNPs) serve as the catalyst. In this process, the AgNPs act as self-propelled particles that are constantly removing silicon along their trajectories. High-resolution X-ray imaging and electron tomography reveal a resulting large open porosity and inner surface for potential applications in high-performance energy storage, harvesting and conversion or for on-chip sensorics and actuorics. Finally, the hierarchically porous silicon membranes can be transformed structure-conserving by thermal oxidation into hierarchically porous amorphous silica, a material that could be of particular interest for opto-fluidic and (bio-)photonic applications due to its multiscale artificial vascularization.

2.
Langmuir ; 36(45): 13448-13456, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33151688

RESUMO

This study reports on the potential-induced charge and mass transfer between an ultrathin polypyrrole (PPy) film and an electrolyte by simultaneous in situ X-ray reflectivity (XRR) and electrochemistry (EC) utilizing their sensitivity to electrons. An about 30 nm thin PPy film was deposited on a silicon single crystal by fast potential cycling, providing a dense film of an extraordinary small surface roughness. XRR was recorded from the PPy film in an aqueous 0.1 M perchloric acid at electric potentials between -0.2 V and +0.5 V vs Ag/AgCl. The PPy film shows typical reversible and linear changes in film thickness and electron density arising from the potential-dependent electrolyte incorporation. By introducing EC-XRR, a comprehensive analysis combining in situ XRR and EC, the net number of electrons passing through the PPy-electrolyte interface was deduced along with the potential-induced thickness variations, indicating a complex exchange mechanism. Evidently, along with the anion transfer, parallel charge compensation by protons and a volume and electron compensating counterflow of solvent molecules take place. Complementary time-dependent EC-XRR scans indicate that these exchange mechanisms are individual in two potential ranges. The low actuation along with a high pseudocapacitance suggest the fast potentiodynamically deposited PPy film as a promising supercapacitor material.

3.
Adv Mater ; 34(1): e2105923, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34677879

RESUMO

Nanoporosity in silicon results in interface-dominated mechanics, fluidics, and photonics that are often superior to the ones of the bulk material. However, their active control, for example, by electronic stimuli, is challenging due to the absence of intrinsic piezoelectricity in the base material. Here, for large-scale nanoporous silicon cantilevers wetted by aqueous electrolytes, electrosorption-induced mechanical stress generation of up to 600 kPa that is reversible and adjustable at will by potential variations of ≈1 V is shown. Laser cantilever bending experiments in combination with in operando voltammetry and step coulombmetry allow this large electro-actuation to be traced to the concerted action of 100 billions of parallel nanopores per square centimeter cross-section and determination of the capacitive charge-stress coupling parameter upon ion adsorption and desorption as well as the intimately related stress actuation dynamics for perchloric and isotonic saline solutions. A comparison with planar silicon surfaces reveals mechanistic insights on the observed electrocapillarity (Hellmann-Feynman interactions) with respect to the importance of oxide formation and wall roughness on the single-nanopore scale. The observation of robust electrochemo-mechanical actuation in a mainstream semiconductor with wafer-scale, self-organized nanoporosity opens up novel opportunities for on-chip integrated stress generation and actuorics at exceptionally low operation voltages.

4.
Nat Commun ; 12(1): 3597, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127659

RESUMO

Nanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor. A difficult to assess mechanics has however significantly limited its application in fields ranging from nanofluidics and biosensorics to drug delivery, energy storage and photonics. Here, we present a study on laser-excited elastic guided waves detected contactless and non-destructively in dry and liquid-infused single-crystalline porous silicon. These experiments reveal that the self-organised formation of 100 billions of parallel nanopores per square centimetre cross section results in a nearly isotropic elasticity perpendicular to the pore axes and an 80% effective stiffness reduction, altogether leading to significant deviations from the cubic anisotropy observed in bulk silicon. Our thorough assessment of the wafer-scale mechanics of nanoporous silicon provides the base for predictive applications in robust on-chip devices and evidences that recent breakthroughs in laser ultrasonics open up entirely new frontiers for in-situ, non-destructive mechanical characterisation of dry and liquid-functionalised porous materials.

5.
Sci Adv ; 6(40)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32998892

RESUMO

The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along with the sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA