Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 604(7905): 280-286, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418631

RESUMO

Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures1. Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported2-5. Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells6,7. Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (Voc) of wide-gap perovskite cells8 and losses introduced by the interconnect between the subcells9,10. Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high Voc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high Voc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells11, show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions12 and are on a par with perovskite-CIGS and all-perovskite multijunctions13.


Assuntos
Compostos de Cálcio , Índio , Cobre , Óxidos , Titânio
2.
Nat Commun ; 8: 13938, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067308

RESUMO

The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and-more importantly-it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA