Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Theor Biol ; 557: 111332, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36323393

RESUMO

In March 2020 mathematics became a key part of the scientific advice to the UK government on the pandemic response to COVID-19. Mathematical and statistical modelling provided critical information on the spread of the virus and the potential impact of different interventions. The unprecedented scale of the challenge led the epidemiological modelling community in the UK to be pushed to its limits. At the same time, mathematical modellers across the country were keen to use their knowledge and skills to support the COVID-19 modelling effort. However, this sudden great interest in epidemiological modelling needed to be coordinated to provide much-needed support, and to limit the burden on epidemiological modellers already very stretched for time. In this paper we describe three initiatives set up in the UK in spring 2020 to coordinate the mathematical sciences research community in supporting mathematical modelling of COVID-19. Each initiative had different primary aims and worked to maximise synergies between the various projects. We reflect on the lessons learnt, highlighting the key roles of pre-existing research collaborations and focal centres of coordination in contributing to the success of these initiatives. We conclude with recommendations about important ways in which the scientific research community could be better prepared for future pandemics. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , Aprendizagem , Matemática , Reino Unido/epidemiologia
2.
R Soc Open Sci ; 8(8): 210310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34386249

RESUMO

In this paper, we present work on SARS-CoV-2 transmission in UK higher education settings using multiple approaches to assess the extent of university outbreaks, how much those outbreaks may have led to spillover in the community, and the expected effects of control measures. Firstly, we found that the distribution of outbreaks in universities in late 2020 was consistent with the expected importation of infection from arriving students. Considering outbreaks at one university, larger halls of residence posed higher risks for transmission. The dynamics of transmission from university outbreaks to wider communities is complex, and while sometimes spillover does occur, occasionally even large outbreaks do not give any detectable signal of spillover to the local population. Secondly, we explored proposed control measures for reopening and keeping open universities. We found the proposal of staggering the return of students to university residence is of limited value in terms of reducing transmission. We show that student adherence to testing and self-isolation is likely to be much more important for reducing transmission during term time. Finally, we explored strategies for testing students in the context of a more transmissible variant and found that frequent testing would be necessary to prevent a major outbreak.

3.
Proc Math Phys Eng Sci ; 470(2171): 20140490, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25383034

RESUMO

We analyse the novel dynamics arising in a nonlinear rotor dynamic system by investigating the discontinuity-induced bifurcations corresponding to collisions with the rotor housing (touchdown bearing surface interactions). The simplified Föppl/Jeffcott rotor with clearance and mass unbalance is modelled by a two degree of freedom impact-friction oscillator, as appropriate for a rigid rotor levitated by magnetic bearings. Two types of motion observed in experiments are of interest in this paper: no contact and repeated instantaneous contact. We study how these are affected by damping and stiffness present in the system using analytical and numerical piecewise-smooth dynamical systems methods. By studying the impact map, we show that these types of motion arise at a novel non-smooth Hopf-type bifurcation from a boundary equilibrium bifurcation point for certain parameter values. A local analysis of this bifurcation point allows us a complete understanding of this behaviour in a general setting. The analysis identifies criteria for the existence of such smooth and non-smooth bifurcations, which is an essential step towards achieving reliable and robust controllers that can take compensating action.

4.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA