Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Biol Sci ; 290(2010): 20231377, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37935367

RESUMO

Predators can directly and indirectly alter the foraging behaviour of prey through direct predation and the risk of predation, and in doing so, initiate indirect effects that influence myriad species and ecological processes. We describe how wolves indirectly alter the trajectory of forests by constraining the distance that beavers, a central place forager and prolific ecosystem engineer, forage from water. Specifically, we demonstrate that wolves wait in ambush and kill beavers on longer feeding trails than would be expected based on the spatio-temporal availability of beavers. This pattern is driven by temporal dynamics of beaver foraging: beavers make more foraging trips and spend more time on land per trip on longer feeding trails that extend farther from water. As a result, beavers are more vulnerable on longer feeding trails than shorter ones. Wolf predation appears to be a selective evolutionary pressure propelled by consumptive and non-consumptive mechanisms that constrain the distance from water beavers forage, which in turn limits the area of forest around wetlands, lakes and rivers beavers alter through foraging. Thus, wolves appear intricately linked to boreal forest dynamics by shaping beaver foraging behaviour, a form of natural disturbance that alters the successional and ecological states of forests.


Assuntos
Ecossistema , Lobos , Animais , Florestas , Comportamento Predatório , Roedores , Água
2.
Ecol Appl ; 33(7): e2911, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37602927

RESUMO

Humans are increasingly recognized as important players in predator-prey dynamics by modifying landscapes. This trend has been well-documented for large mammal communities in North American boreal forests: logging creates early seral forests that benefit ungulates such as white-tailed deer (Odocoileus virginianus), while the combination of infrastructure development and resource extraction practices generate linear features that allow predators such as wolves (Canis lupus) to travel and forage more efficiently throughout the landscape. Disturbances from recreational activities and residential development are other major sources of human activity in boreal ecosystems that may further alter wolf-ungulate dynamics. Here, we evaluate the influence that several major types of anthropogenic landscape modifications (timber harvest, linear features, and residential infrastructure) have on where and how wolves hunt ungulate neonates in a southern boreal forest ecosystem in Minnesota, USA. We demonstrate that each major anthropogenic disturbance significantly influences wolf predation of white-tailed deer fawns (n = 427 kill sites). In contrast with the "human shield hypothesis" that posits prey use human-modified areas as refuge, wolves killed fawns closer to residential buildings than expected based on spatial availability. Fawns were also killed within recently-logged areas more than expected. Concealment cover was higher at kill sites than random sites, suggesting wolves use senses other than vision, probably olfaction, to detect hidden fawns. Wolves showed strong selection for hunting along linear features, and kill sites were also closer to linear features than expected. We hypothesize that linear features facilitated wolf predation on fawns by allowing wolves to travel efficiently among high-quality prey patches (recently logged areas, near buildings), and also increase encounter rates with olfactory cues that allow them to detect hidden fawns. These findings provide novel insight into the strategies predators use to hunt ungulate neonates and the many ways human activity alters wolf-ungulate neonate predator-prey dynamics, which have remained elusive due to the challenges of locating sites where predators kill small prey. Our research has important management and conservation implications for wolf-ungulate systems subjected to anthropogenic pressures, particularly as the range of overlap between wolves and deer expands and appears to be altering food web dynamics in boreal ecosystems.

3.
J Anim Ecol ; 89(6): 1433-1447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32145068

RESUMO

According to the ideal-free distribution (IFD), individuals within a population are free to select habitats that maximize their chances of success. Assuming knowledge of habitat quality, the IFD predicts that average fitness will be approximately equal among individuals and between habitats, while density varies, implying that habitat selection will be density dependent. Populations are often assumed to follow an IFD, although this assumption is rarely tested with empirical data, and may be incorrect when territoriality indicates habitat selection tactics that deviate from the IFD (e.g. ideal-despotic distribution or ideal-preemptive distribution). When territoriality influences habitat selection, species' density will not directly reflect components of fitness such as reproductive success or survival. In such cases, assuming an IFD can lead to false conclusions about habitat quality. We tested theoretical models of density-dependent habitat selection on a species known to exhibit territorial behaviour in order to determine whether commonly applied habitat models are appropriate under these circumstances. We combined long-term radiotelemetry and census data from grey wolves Canis lupus in the Upper Peninsula of Michigan, USA to relate spatiotemporal variability in wolf density to underlying classifications of habitat within a hierarchical state-space modelling framework. We then iteratively applied isodar analysis to evaluate which distribution of habitat selection best described this recolonizing wolf population. The wolf population in our study expanded by >1,000% during our study (~50 to >600 individuals), and density-dependent habitat selection was most consistent with the ideal-preemptive distribution, as opposed to the ideal-free or ideal-despotic alternatives. Population density of terrestrial carnivores may not be positively correlated with the fitness value of their habitats, and density-dependent habitat selection patterns may help to explain complex predator-prey dynamics and cascading indirect effects. Source-sink population dynamics appear likely when species exhibit rapid growth and occupy interspersed habitats of contrasting quality. These conditions are likely and have implications for large carnivores in many systems, such as areas in North America and Europe where large predator species are currently recolonizing their former ranges.


Assuntos
Lobos , Animais , Ecossistema , Europa (Continente) , Michigan , América do Norte , Territorialidade
4.
Ecology ; 94(6): 1317-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23923495

RESUMO

Spatial heterogeneity of soil resources, particularly nitrogen availability, affects herbaceous-layer cover and diversity in temperate forest ecosystems. Current hypotheses predict that ungulate herbivores influence nitrogen availability at the stand scale, but how ungulates affect nitrogen availability at finer spatial scales that are relevant to the herb layer is less understood. We tested the hypothesis that ungulate exclusion reduces the spatial complexity of nitrogen availability at neighborhood scales (1-26 m) apart from mean stand scale effects. This outcome was expected due to a lack of ungulate nitrogenous waste deposition within exclosures and seasonally variable ungulate habitat use. To test this hypothesis we examined spatial patterning of ammonium and nitrate availability, herb-layer cover and diversity, and under-canopy solar radiation using geostatistical models. Our study sites included six stands of eastern hemlock (Tsuga canadensis) forest: three where white-tailed deer (Odocoileus virginianus) were excluded and three that were accessible to deer. Where deer were present, patch sizes of ammonium availability, cover, and diversity were smaller compared to deer exclosures, whereas mean site-level effects were not significant. Within deer exclosures cover and solar radiation were more similar in patch size than were cover and nitrogen availability. Our results suggest that browsing ungulates affect spatial patterns of herb-layer cover and diversity through the excretion of nitrogenous wastes in small, discrete patches. Ungulate-excreted nitrogen deposition and herbivory were concentrated in the dormant season, allowing herb-layer plants a greater opportunity to benefit from nitrogen additions. Therefore, the impact of ungulates on nitrogen cycling in forest ecosystems varies with spatial scale and the seasonal timing of ungulate impacts. In this way, ungulates may function as a seasonally dependent link between fine-scale and landscape-level ecological processes.


Assuntos
Cervos/fisiologia , Ecossistema , Nitrogênio/metabolismo , Estações do Ano , Animais , Demografia , Ciclo do Nitrogênio
5.
Ecol Evol ; 13(11): e10694, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034341

RESUMO

Recolonization of predators to their former ranges is becoming increasingly prevalent. Such recolonization places predators among their prey once again; the latter having lived without predation (from such predators) for a considerable time. This renewed coexistence creates opportunities to explore predation ecology at both fundamental and applied levels. We used a paired experimental design to investigate white-tailed deer risk allocation in the Upper and Lower Peninsulas (UP and LP) in Michigan, USA. Wolves are functionally absent in the LP, while deer in the UP coexist with a re-established wolf population. We treated 15 sites each in UP and LP with wolf olfactory cues and observed deer vigilance, activity, and visitation rates at the interface of habitat covariates using remote cameras. Such a paired design across wolf versus no-wolf areas allowed us to examine indirect predation effects while accounting for confounding parameters such as the presence of other predators and human activity. While wolf urine had no effect across most metrics in both UP and LP, we observed differences in deer activity in areas with versus without wolves. Sites treated with wolf urine in the UP showed a reduction in crepuscular deer activity, compared to control/novel-scent treated sites. Furthermore, we observed a strong positive effect of vegetation cover on deer vigilance in these sites. This indicates that simulated predator cues likely affect deer vigilance more acutely in denser habitats, which presumably facilitates predation success. Such responses were however absent among deer in the LP that are presumably naïve toward wolf predation. Where human and non-human predators hunt shared prey, such as in Michigan, predators may constrain human hunting success by increasing deer vigilance. Hunters may avoid such exploitative competition by choosing hunting/bait sites located in open areas. Our results pertaining to fundamental predation ecology have strong applied implications that can promote human-predator coexistence.

6.
Commun Biol ; 6(1): 1045, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838820

RESUMO

The demands of raising dependent young can influence the feeding behaviors of social carnivores, especially for individuals that are primarily responsible for provisioning young. We investigated how the feeding and provisioning behavior of a social carnivore, gray wolves (Canis lupus), are connected and shaped by extrinsic and intrinsic factors, and whether and how these patterns changed throughout the pup-rearing season (April-August). We found breeding wolves had shorter handling times of prey, lower probability of returning to kills, and greater probability of returning to homesites after kills compared to subordinate individuals. However, the feeding and provisioning behaviors of breeding individuals changed considerably over the pup-rearing season. Wolves had longer handling times and returned to provision pups directly after kills less frequently as annual prey abundance decreased. These patterns indicate that adult wolves prioritize meeting their own energetic demands over those of their pups when prey abundance decreases. We suggest that differential provisioning of offspring based on prey abundance is a behavioral mechanism by which group size adjusts to available resources via changes in neonate survival.


Assuntos
Lobos , Humanos , Animais , Recém-Nascido , Comportamento Predatório , Estações do Ano , Comportamento Alimentar
7.
R Soc Open Sci ; 10(5): 230210, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234502

RESUMO

Through global positioning system (GPS) collar locations, remote cameras, field observations and the first wild wolf to be GPS-collared with a camera collar, we describe when, where and how wolves fish in a freshwater ecosystem. From 2017 to 2021, we recorded more than 10 wolves (Canis lupus) hunting fish during the spring spawning season in northern Minnesota, USA. Wolves ambushed fish in creeks at night when spawning fish were abundant, available and vulnerable in shallow waters. We observed wolves specifically targeting sections of rivers below beaver (Castor canadensis) dams, suggesting that beavers may indirectly facilitate wolf fishing behaviour. Wolves also cached fish on shorelines. We documented these findings across five different social groups at four distinct waterways, suggesting that wolf fishing behaviour may be widespread in similar ecosystems but has probably remained difficult to study given its annual brevity. Spawning fish may serve as a valuable pulsed resource for packs because the spring spawning season coincides with low primary prey (deer Odocoileus virginianus) availability and abundance, and when packs have higher energetic demands owing to newly born pups. We demonstrate the flexibility and adaptability of wolf hunting and foraging behaviour, and provide insight into how wolves can survive in a myriad of ecosystems.

8.
Ecol Appl ; 22(5): 1428-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22908703

RESUMO

The application of stable hydrogen isotope (deltaD) techniques has swiftly advanced our understanding of animal movements, but this progression is dominated by studies of birds and relatively long-distance, north-south migrants. This dominance reflects the challenge of incorporating multiple sources of error into geographic assignments and the nature of spatially explicit deltaD models, which possess greater latitudinal than longitudinal resolution. However, recent progress in likelihood-based assignments that incorporate multiple sources of isotopic error and Bayesian approaches that include additional sources of information may advance finer-scale understanding of animal movements. We develop a stable-isotope method for determining probable origins of bats within hibernacula and show that this method produces spatially explicit, continuous assignments with regional resolution. We outline how these assignments can be used to infer hibernacula connectivity, an application that could inform spatial modeling of white-nose syndrome. Additionally, estimates of seasonal and annual flight distances for many cave-dwelling bat species can be derived from this approach. We also discuss how this application can be used in general to provide insights into variable migratory and foraging strategies within bat populations.


Assuntos
Cavernas , Quirópteros/fisiologia , Hibernação/fisiologia , Migração Animal , Animais , Demografia , Deutério/química , Deutério/metabolismo , Michigan , Modelos Biológicos
9.
Sci Rep ; 12(1): 5698, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383206

RESUMO

Rail and road infrastructure is essential for economic growth and development but can cause a gradual loss in biodiversity and degradation of ecosystem function and services. We assessed the influence of underpass dimensions, fencing, proximity to water and roads, Normalized Difference Vegetation Index (NDVI), presence of other species and livestock on underpass use by large and medium-sized mammals. Results revealed hyenas and leopards used the underpasses more than expected whereas giraffes and antelopes used the underpasses less than expected. Generalized linear mixed-effects models revealed that underpass height influenced use by wildlife, with several species preferring to use taller underpasses. Electric fencing increased underpass use by funneling species towards underpasses, except for elephants and black-backed jackal for which it reduced underpass passage. We also found that the use of underpasses by livestock reduced the probability of use by nearly 50% for wildlife species. Carnivore species were more likely to cross underpasses used by their prey. Buffalo, livestock, and hyenas used underpasses characterized by vegetation with higher NDVI and near water sources while baboons, dik-diks and antelope avoided underpasses with high NDVI. Our findings suggest a need for diverse and comprehensive approaches for mitigating the negative impacts of rail on African wildlife.


Assuntos
Ecossistema , Mamíferos , Animais , Animais Selvagens , Ecologia , Quênia
10.
iScience ; 24(5): 102406, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34013168

RESUMO

Understanding sexual segregation is crucial to comprehend sociality. A comparative analysis of long-term lion data from Serengeti and Ngorongoro in Tanzania, and Gir in India, reveals that male-female associations are contingent upon male and female group size, prey-size and availability, and the number of prides that each male coalition currently resides. Males maintain proximity with females, whereas females are responsible for segregation except at large kills. Lions feed on the largest prey in Ngorongoro and the smallest in Gir, and females spend the most time with males in Ngorongoro and the least in Gir. Females roar less often in prey-scarce circumstances in Serengeti and throughout the year in Gir possibly to prevent being tracked by males that parasitize on female kills. However, females readily associate with males when available prey is large and abundant. Contrasting availability of resources between Gir and Serengeti/Ngorongoro helps explain the varying degrees of sexual segregation and appears to drive differences in mating systems between these lion populations.

11.
Sci Rep ; 10(1): 17527, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067511

RESUMO

The influence of kinship on animal cooperation is often unclear. Cooperating Asiatic lion coalitions are linearly hierarchical; male partners appropriate resources disproportionately. To investigate how kinship affect coalitionary dynamics, we combined microsatellite based genetic inferences with long-term genealogical records to measure relatedness between coalition partners of free-ranging lions in Gir, India. Large coalitions had higher likelihood of having sibling partners, while pairs were primarily unrelated. Fitness computations incorporating genetic relatedness revealed that low-ranking males in large coalitions were typically related to the dominant males and had fitness indices higher than single males, contrary to the previous understanding of this system based on indices derived from behavioural metrics alone. This demonstrates the indirect benefits to (related) males in large coalitions. Dominant males were found to 'lose less' if they lost mating opportunities to related partners versus unrelated males. From observations on territorial conflicts we show that while unrelated males cooperate, kin-selected benefits are ultimately essential for the maintenance of large coalitions. Although large coalitions maximised fitness as a group, demographic parameters limited their prevalence by restricting kin availability. Such demographic and behavioural constraints condition two-male coalitions to be the most attainable compromise for Gir lions.


Assuntos
Leões/fisiologia , Comportamento Sexual Animal , Comportamento Social , Territorialidade , Alelos , Animais , Feminino , Índia , Masculino , Repetições de Microssatélites , Polimorfismo Genético , Reprodução , Fatores Sexuais
12.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188026

RESUMO

Gray wolves are a premier example of how predators can transform ecosystems through trophic cascades. However, whether wolves change ecosystems as drastically as previously suggested has been increasingly questioned. We demonstrate how wolves alter wetland creation and recolonization by killing dispersing beavers. Beavers are ecosystem engineers that generate most wetland creation throughout boreal ecosystems. By studying beaver pond creation and recolonization patterns coupled with wolf predation on beavers, we determined that 84% of newly created and recolonized beaver ponds remained occupied until the fall, whereas 0% of newly created and recolonized ponds remained active after a wolf killed the dispersing beaver that colonized that pond. By affecting where and when beavers engineer ecosystems, wolves alter all of the ecological processes (e.g., water storage, nutrient cycling, and forest succession) that occur due to beaver-created impoundments. Our study demonstrates how predators have an outsized effect on ecosystems when they kill ecosystem engineers.

13.
Ecology ; 90(11): 3159-67, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19967871

RESUMO

Mechanistic links between top terrestrial predators and biogeochemical processes remain poorly understood. Here we demonstrate that large carnivores configure landscape heterogeneity through prey carcass distribution. A 50-year record composed of > 3600 moose carcasses from Isle Royale National Park, Michigan, USA, showed that wolves modulate heterogeneity in soil nutrients, soil microbes, and plant quality by clustering prey carcasses over space. Despite being well utilized by predators, moose carcasses resulted in elevated soil macronutrients and microbial biomass, shifts in soil microbial composition, and elevated leaf nitrogen for at least 2-3 years at kill sites. Wolf-killed moose were deposited in some regions of the study landscape at up to 12x the rate of deposition in other regions. Carcass density also varied temporally, changing as much as 19-fold in some locations during the 50-year study period. This variation arises, in part, directly from variation in wolf hunting behavior. This study identifies a top terrestrial predator as a mechanism generating landscape heterogeneity, demonstrating reciprocal links between large carnivore behavior and ecosystem function.


Assuntos
Cervos/fisiologia , Comportamento Alimentar/fisiologia , Nitrogênio/química , Solo/análise , Lobos/fisiologia , Animais , Nitrogênio/metabolismo
14.
Ecol Appl ; 19(6): 1596-613, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19769106

RESUMO

Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long-term shifts in habitat conditions. Better knowledge of patterns of natural disturbance experienced by prey communities, and appropriate allocation of human disturbance over seasons or years, may yield alternative strategies to large-scale closures that may be politically and economically problematic.


Assuntos
Anseriformes/metabolismo , Conservação dos Recursos Naturais , Metabolismo Energético , Comportamento Alimentar , Modelos Biológicos , Animais , Bivalves , Mergulho , Feminino , Cadeia Alimentar , Efeito Estufa , Humanos , Camada de Gelo , Oceano Pacífico , Densidade Demográfica , Incerteza
15.
J Anim Ecol ; 78(2): 338-45, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19021781

RESUMO

1. Concurrent measurement of population dynamics and associated spatio-temporal patterns of resource flow across aquatic-terrestrial boundaries are rare, yet necessary to understand the consequences of cross-habitat resource flux. Long-term study of the moose Alces alces (L.) population in Isle Royale National Park (Lake Superior, USA) provides an opportunity to examine the patterns of resource flux from aquatic to terrestrial habitats over approximately50 years. 2. We analysed the spatio-temporal dynamics of aquatic-derived nitrogen (N) that moose transfer to terrestrial systems by using excretion models, foraging parameters, moose densities, and moose carcass locations (n = 3616) collected from 1958-2005. 3. Results suggest that moose transfer significant amounts of aquatic-derived N to terrestrial systems, which likely increases terrestrial N availability in riparian zones. A seasonal increase in terrestrial N availability when moose are foraging on N-rich aquatic macrophytes would contrast with the depression of soil N mineralization previously attributed indirectly to moose. 4. Aquatic foraging by moose and moose carcass locations are significantly clustered at multiple scales, indicating that grey wolves Canis lupus (L.) and moose can create concentrated areas of resource transfer due to clustered predation and foraging patterns. 5. This study shows that patterns of faunal-mediated resource transfer can depend significantly on predator-prey dynamics, and that large predators in this system influence herbivore-controlled resource transfer between ecosystems. Given the circumpolar extent of moose, they constitute an important, unquantified aquatic-terrestrial resource vector in boreal systems.


Assuntos
Cervos/fisiologia , Água Doce , Árvores/fisiologia , Animais , Michigan , Nitrogênio , Lobos/fisiologia
16.
Ecol Evol ; 9(22): 12613-12622, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788201

RESUMO

Estimation of population trends and demographic parameters is important to our understanding of fundamental ecology and species management, yet these data are often difficult to obtain without the use of data from population surveys or marking animals. The northeastern Minnesota moose (Alces alces Linnaeus, 1758) population declined 58% during 2006-2017, yet aerial surveys indicated stability during 2012-2017. In response to the decline, the Minnesota Department of Natural Resources (MNDNR) initiated studies of adult and calf survival to better understand cause-specific mortality, calf recruitment, and factors influencing the population trajectory. We estimated population growth rate (λ) using adult survival and calf recruitment data from demographic studies and the recruitment-mortality (R-M) Equation and compared these estimates to those calculated using data from aerial surveys. We then projected population dynamics 50 years using each resulting λ and used a stochastic model to project population dynamics 30 years using data from the MNDNR's studies. Calculations of λ derived from 2012 to 2017 survey data, and the R-M Equation indicated growth (1.02 ± 0.16 [SE] and 1.01 ± 0.04, respectively). However, the stochastic model indicated a decline in the population over 30 years (λ = 0.91 ± 0.004; 2014-2044). The R-M Equation has utility for estimating λ, and the supporting information from demographic collaring studies also helps to better address management questions. Furthermore, estimates of λ calculated using collaring data were more certain and reflective of current conditions. Long-term monitoring using collars would better inform population performance predictions and demographic responses to environmental variability.

17.
R Soc Open Sci ; 6(11): 190282, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827818

RESUMO

Habitat selection is a process that spans space, time and individual life histories. Ecological analyses of animal distributions and preferences are most accurate when they account for inherent dynamics of the habitat selection process. Strong territoriality can constrain perception of habitat availability by individual animals or groups attempting to colonize or establish new territory. Because habitat selection is a function of habitat availability, broad-scale changes in habitat availability or occupancy can drive density-dependent habitat functional responses. We investigated density-dependent habitat selection over a 19-year period of grey wolf (Canis lupus) recovery in Michigan, USA, using a generalized linear mixed model framework to develop a resource selection probability function (RSPF) with habitat coefficients conditioned on random effects for wolf packs and random year intercepts. In addition, we allowed habitat coefficients to vary as interactions with increasing wolf density over space and time. Results indicated that pack presence was driven by factors representing topography, human development, winter prey availability, forest structure, roads, streams and snow. Importantly, responses to many of these predictors were density-dependent. Spatio-temporal dynamics and population changes can cause considerable variation in wildlife-habitat relationships, possibly confounding interpretation of conventional habitat selection models. By incorporating territoriality into an RSPF analysis, we determined that wolves' habitat use in Michigan shifted over time, for example, exhibiting declining responses to winter prey indices and switching from positive to negative responses with respect to stream densities. We consider this an important example of a habitat functional response in wolves, driven by colonization, density-dependence and changes in occupancy during a time period of range expansion and population increase.

19.
Trends Ecol Evol ; 34(10): 950-961, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31256926

RESUMO

The decomposition of animal biomass (carrion) contributes to the recycling of energy and nutrients through ecosystems. Whereas the role of plant decomposition in ecosystems is broadly recognised, the significance of carrion to ecosystem functioning remains poorly understood. Quantitative data on carrion biomass are lacking and there is no clear pathway towards improved knowledge in this area. Here, we present a framework to show how quantities derived from individual carcasses can be scaled up using population metrics, allowing for comparisons among ecosystems and other forms of biomass. Our framework facilitates the generation of new data that is critical to building a quantitative understanding of the contribution of carrion to trophic processes and ecosystem stocks and flows.


Assuntos
Ecossistema , Plantas , Animais , Biomassa
20.
Artigo em Inglês | MEDLINE | ID: mdl-30348866

RESUMO

Trophic rewilding maintains that large mammals are functionally important to resource subsidies and nutrient repletion, yet this prediction is understudied. Here, I report on the potential magnitude and variability of nitrogen that moose populations move from aquatic to terrestrial ecosystems. My aim is to provide justified approximations of the role of moose in the flux of a limiting nutrient across ecotones and to illustrate how this role is linked to wolf predation and climate warming. Using Isle Royale and northeastern Minnesota, USA as contrasting focal systems, I found that the long-term annual N gain for riparian forests likely ranges from 1 to 10 kg N ha-1 yr-1, depending on the heterogeneity of moose movements. For these systems, this range is equivalent to approximately 4-30% of net annual N mineralization, approximately 62-625% of annual N runoff, approximately 28-333% of annual atmospheric N deposition and approximately 31-312% of the N sequestered by trees. The N flux approximation is most sensitive to moose population levels and, as such, is influenced by wolves, climate warming and disease. The potential for other terrestrial ungulates that feed on aquatic plants to provide significant nutrient repletion across ecotones is unknown but important to examine in the context of trophic rewilding. The extent to which predators influence ungulate abundance indirectly impacts this nutrient repletion.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.


Assuntos
Conservação dos Recursos Naturais , Cervos/fisiologia , Florestas , Herbivoria , Ciclo do Nitrogênio , Distribuição Animal , Animais , Mudança Climática , Cadeia Alimentar , Michigan , Minnesota , Nutrientes/análise , Lobos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA