Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074770

RESUMO

Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.


Assuntos
Anticorpos Antivirais/química , Sítios de Ligação , Capsídeo/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Parvovirus Canino/fisiologia , Ligação Proteica/fisiologia , Animais , Anticorpos Antivirais/imunologia , Antígenos/metabolismo , Microscopia Crioeletrônica , Cães , Epitopos/genética , Epitopos/imunologia , Mutação , Domínios Proteicos
2.
Proc Natl Acad Sci U S A ; 116(41): 20462-20471, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548398

RESUMO

Canine parvovirus (CPV) is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Cross-species transmission of CPV occurs as a result of mutations on the viral capsid surface that alter the species-specific binding to the host receptor, transferrin receptor type-1 (TfR). The interaction between CPV and TfR has been extensively studied, and previous analyses have suggested that the CPV-TfR complex is asymmetric. To enhance the understanding of the underlying molecular mechanisms, we determined the CPV-TfR interaction using cryo-electron microscopy to solve the icosahedral (3.0-Å resolution) and asymmetric (5.0-Å resolution) complex structures. Structural analyses revealed conformational variations of the TfR molecules relative to the binding site, which translated into dynamic molecular interactions between CPV and TfR. The precise footprint of the receptor on the virus capsid was identified, along with the identity of the amino acid residues in the virus-receptor interface. Our "rock-and-roll" model provides an explanation for previous findings and gives insights into species jumping and the variation in host ranges associated with new pandemics in dogs.


Assuntos
Capsídeo/metabolismo , Parvovirus Canino/fisiologia , Receptores da Transferrina/metabolismo , Receptores Virais/metabolismo , Vírion/metabolismo , Animais , Capsídeo/química , Gatos , Microscopia Crioeletrônica , Cães , Conformação Proteica , Receptores da Transferrina/química , Receptores Virais/química , Especificidade da Espécie , Vírion/química
3.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626673

RESUMO

Parvovirus-derived endogenous viral elements (EVEs) have been found in the genomes of many different animal species, resulting from integration events that may have occurred from more than 50 million years ago to much more recently. Here, we further investigate the properties of autonomous parvovirus EVEs and describe their relationships to contemporary viruses. While we did not find any intact capsid protein open reading frames in the integrated viral sequences, we examined three EVEs that were repaired to form full-length sequences with relatively few changes. These sequences were found in the genomes of Rattus norvegicus (brown rat), Mus spretus (Algerian mouse), and Apodemus sylvaticus (wood mouse). The R. norvegicus sequence was not present in the genomes of the closely related species R. rattus, R. tanezumi, R. exulans, and R. everetti, indicating that it was less than 2 million years old, and the M. spretus and A. sylvaticus sequences were not found in the published genomes of other mouse species, also indicating relatively recent insertions. The M. spretus VP2 sequence assembled into capsids, which had high thermal stability, bound the sialic acid N-acetylneuraminic acid, and entered murine L cells. The 3.89-Å structure of the M. spretus virus-like particles (VLPs), determined using cryo-electron microscopy, showed similarities to rodent and porcine parvovirus capsids. The repaired VP2 sequences from R. norvegicus and A. sylvaticus did not assemble as first prepared, but chimeras combining capsid surface loops from R. norvegicus with canine parvovirus assembled, allowing some of that capsid's structures and functions to be examined.IMPORTANCE Parvovirus endogenous viral elements (EVEs) that have been incorporated into the genomes of different animals represent remnants of the DNA sequences of ancient viruses that infected the ancestors of those animals millions of years ago, but we know little about their properties or how they differ from currently circulating parvoviruses. By expressing the capsid proteins of different parvovirus EVEs that were found integrated into the genomes of three different rodents, we can examine their structures and functions. A VP2 (major capsid protein) EVE sequence from a mouse genome assembled into capsids that had a similar structure and biophysical properties to extant parvoviruses and also bound sialic acids and entered rodent cells. Chimeras formed from combinations of canine parvovirus and portions of the parvovirus sequences from the brown rat genome allowed us to examine the structures and functions of the surface loops of that EVE capsid.


Assuntos
Proteínas do Capsídeo/genética , Genoma/genética , Infecções por Parvoviridae/genética , Parvovirus/genética , Roedores/genética , Roedores/virologia , Animais , Capsídeo , Gatos , Linhagem Celular , Cães , Células HEK293 , Humanos , Camundongos , Infecções por Parvoviridae/virologia , Ratos , Células Sf9 , Suínos
4.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29695427

RESUMO

Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.


Assuntos
Anticorpos Antivirais/metabolismo , Capsídeo/metabolismo , Mutação , Parvovirus/patogenicidade , Receptores da Transferrina/metabolismo , Animais , Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Gatos , Linhagem Celular , Cães , Especificidade de Hospedeiro , Humanos , Chacais , Modelos Moleculares , Parvovirus/imunologia , Guaxinins , Receptores da Transferrina/química
5.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045987

RESUMO

Alphaherpesvirus-associated ocular infections in humans caused by human alphaherpesvirus 1 (HHV-1) remain challenging to treat due to the frequency of drug application required and the potential for the selection of drug-resistant viruses. Repurposing on-the-market drugs is a viable strategy to accelerate the pace of drug development. It has been reported that the human immunodeficiency virus (HIV) integrase inhibitor raltegravir inhibits HHV-1 replication by targeting the DNA polymerase accessory factor and limits terminase-mediated genome cleavage of human betaherpesvirus 5 (HHV-5). We have previously shown, both in vitro and in vivo, that raltegravir can also inhibit the replication of felid alphaherpesvirus 1 (FeHV-1), a common ocular pathogen of cats with a pathogenesis similar to that of HHV-1 ocular disease. In contrast to what was reported for HHV-1, we were unable to select for a raltegravir-resistant FeHV-1 strain in order to define any basis for drug action. A candidate-based approach to explore the mode of action of raltegravir against FeHV-1 showed that raltegravir did not impact FeHV-1 terminase function, as described for HHV-5. Instead, raltegravir inhibited DNA replication, similarly to HHV-1, but by targeting the initiation of viral DNA replication rather than elongation. In addition, we found that raltegravir specifically repressed late gene expression independently of DNA replication, and both activities are consistent with inhibition of ICP8. Taken together, these results suggest that raltegravir could be a valuable therapeutic agent against herpesviruses.IMPORTANCE The rise of drug-resistant herpesviruses is a longstanding concern, particularly among immunocompromised patients. Therefore, therapies targeting viral proteins other than the DNA polymerase that may be less likely to lead to drug-resistant viruses are urgently needed. Using FeHV-1, an alphaherpesvirus closely related to HHV-1 that similarly causes ocular herpes in its natural host, we found that the HIV integrase inhibitor raltegravir targets different stages of the virus life cycle beyond DNA replication and that it does so without developing drug resistance under the conditions tested. This shows that the drug could provide a viable strategy for the treatment of herpesvirus infections.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Raltegravir Potássico/farmacologia , Varicellovirus/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Gatos , Linhagem Celular , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Varicellovirus/efeitos dos fármacos , Proteínas Virais/metabolismo
6.
J Am Chem Soc ; 140(46): 15701-15711, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30398860

RESUMO

There are many techniques for monitoring and measuring the interactions between proteins and ligands. Most of these techniques are ensemble methods that can provide association constants and in some cases stoichiometry. Here we use charge detection mass spectrometry (CDMS), a single particle technique, to probe the interactions of antigen binding fragments (Fabs) from a series of antibodies with the canine parvovirus (CPV) capsid. In addition to providing the average number of bound Fabs as a function of Fab concentration (i.e., the binding curve), CDMS measurements provide information about the distribution of bound Fabs. We show that the distribution of bound ligands is much better at distinguishing between different binding models than the binding curve. The binding of Fab E to CPV is a textbook example. A maximum of 60 Fabs bind and the results are consistent with a model where all sites have the same binding affinity. However, for Fabs B, F, and 14, the distributions can only be fit by a model where there are distinct virus subpopulations with different binding affinities. This behavior can be distinguished from a situation where all CPV particles are identical, and each particle has the same distribution of sites with different binding affinities. The different responses to viral heterogeneity can be traced to the Fab binding sites. A comparison of Fab binding to new and aged CPV capsids reveals that a post-translational modification at the binding site for Fab E (M569) probably reduces the binding affinity.


Assuntos
Anticorpos Antivirais/química , Capsídeo/química , Fragmentos Fab das Imunoglobulinas/química , Parvovirus Canino/química , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Sítios de Ligação , Capsídeo/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Espectrometria de Massas , Parvovirus Canino/imunologia
7.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27847360

RESUMO

Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE: Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Parvovirus/fisiologia , Conformação Proteica , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno , Modelos Moleculares , Mutação , Transporte Proteico , Proteólise , Receptores Virais/metabolismo , Relação Estrutura-Atividade , Ligação Viral
8.
Development ; 138(5): 879-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21247963

RESUMO

Within the vertebrate lineage, a high proportion of duplicate genes have been retained after whole genome duplication (WGD) events. It has been proposed that many of these duplicate genes became indispensable because the ancestral gene function was divided between them. In addition, novel functions may have evolved, owing to changes in cis-regulatory elements. Functional analysis of the PAX2/5/8 gene subfamily appears to support at least the first part of this hypothesis. The collective role of these genes has been widely retained, but sub-functions have been differentially partitioned between the genes in different vertebrates. Conserved non-coding elements (CNEs) represent an interesting and readily identifiable class of putative cis-regulatory elements that have been conserved from fish to mammals, an evolutionary distance of 450 million years. Within the PAX2/5/8 gene subfamily, PAX2 is associated with the highest number of CNEs. An additional WGD experienced in the teleost lineage led to two copies of pax2, each of which retained a large proportion of these CNEs. Using a reporter gene assay in zebrafish embryos, we have exploited this rich collection of regulatory elements in order to determine whether duplicate CNEs have evolved different functions. Remarkably, we find that even highly conserved sequences exhibit more functional differences than similarities. We also discover that short flanking sequences can have a profound impact on CNE function. Therefore, if CNEs are to be used as candidate enhancers for transgenic studies or for multi-species comparative analyses, it is paramount that the CNEs are accurately delineated.


Assuntos
Sequência Conservada , Elementos Facilitadores Genéticos/fisiologia , Genes Duplicados , Genoma/genética , Animais , Biologia Computacional , Embrião não Mamífero , Genes Reporter , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/fisiologia , Fator de Transcrição PAX5 , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados , Pesquisa/normas , Peixe-Zebra , Proteínas de Peixe-Zebra
9.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979279

RESUMO

Ebolavirus disease (EVD) is caused by multiple species of Ebolavirus . Monoclonal antibodies (mAbs) against the virus glycoprotein (GP) are the only class of therapeutic approved for treatment of EVD caused by Zaire ebolavirus (EBOV). Therefore, mAbs targeting multiple Ebolavirus species may represent the next generation of EVD therapeutics. Broadly reactive anti-GP mAbs were produced; among these, mAbs 11886 and 11883 were broadly neutralizing in vitro . A 3.0 Å cryo-electron microscopy structure of EBOV GP bound to both mAbs shows that 11886 binds a novel epitope bridging the glycan cap (GC), 3 10 pocket and GP2 N-terminus, whereas 11883 binds the receptor binding region (RBR) and GC. In vitro , 11886 synergized with a range of mAbs with epitope specificities spanning the RBR/GC, including 11883. Notably, 11886 increased the breadth of neutralization by partner mAbs against different Ebolavirus species. These data provide a strategic route to design improved mAb-based next-generation EVD therapeutics.

10.
Science ; 384(6703): eadm8693, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935733

RESUMO

Measles virus (MeV) presents a public health threat that is escalating as vaccine coverage in the general population declines and as populations of immunocompromised individuals, who cannot be vaccinated, increase. There are no approved therapeutics for MeV. Neutralizing antibodies targeting viral fusion are one potential therapeutic approach but have not yet been structurally characterized or advanced to clinical use. We present cryo-electron microscopy (cryo-EM) structures of prefusion F alone [2.1-angstrom (Å) resolution], F complexed with a fusion-inhibitory peptide (2.3-Å resolution), F complexed with the neutralizing and protective monoclonal antibody (mAb) 77 (2.6-Å resolution), and an additional structure of postfusion F (2.7-Å resolution). In vitro assays and examination of additional EM classes show that mAb 77 binds prefusion F, arrests F in an intermediate state, and prevents transition to the postfusion conformation. These structures shed light on antibody-mediated neutralization that involves arrest of fusion proteins in an intermediate state.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Vírus do Sarampo , Proteínas Virais de Fusão , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Vírus do Sarampo/imunologia , Vírus do Sarampo/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Humanos , Conformação Proteica
11.
Cell Host Microbe ; 31(2): 260-272.e7, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36708708

RESUMO

Monoclonal antibodies can provide important pre- or post-exposure protection against infectious disease for those not yet vaccinated or in individuals that fail to mount a protective immune response after vaccination. Inmazeb (REGN-EB3), a three-antibody cocktail against Ebola virus, lessened disease and improved survival in a controlled trial. Here, we present the cryo-EM structure at 3.1 Å of the Ebola virus glycoprotein, determined without symmetry averaging, in a simultaneous complex with the antibodies in the Inmazeb cocktail. This structure allows the modeling of previously disordered portions of the glycoprotein glycan cap, maps the non-overlapping epitopes of Inmazeb, and illuminates the basis for complementary activities and residues critical for resistance to escape by these and other clinically relevant antibodies. We further provide direct evidence that Inmazeb protects against the rapid emergence of escape mutants, whereas monotherapies even against conserved epitopes do not, supporting the benefit of a cocktail versus a monotherapy approach.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Anticorpos Antivirais , Glicoproteínas , Epitopos , Anticorpos Neutralizantes
12.
Cell Rep ; 42(1): 112014, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36681898

RESUMO

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Etnicidade , Epitopos , Anticorpos Antivirais , Anticorpos Neutralizantes , Testes de Neutralização
13.
PLoS Genet ; 5(12): e1000762, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011110

RESUMO

Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA.


Assuntos
Evolução Biológica , Sequências Reguladoras de Ácido Nucleico , Vertebrados/genética , Animais , Humanos , Lampreias/genética
14.
Sci Adv ; 8(24): eabp9151, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714192

RESUMO

Rabies infection is nearly 100% lethal if untreated and kills more than 50,000 people annually, many of them children. Existing rabies vaccines target the rabies virus glycoprotein (RABV-G) but generate short-lived immune responses, likely because the protein is heterogeneous under physiological conditions. Here, we report the 3.39 Å cryo-electron microscopy structure of trimeric, prefusion RABV-G complexed with RVA122, a potently neutralizing human antibody. RVA122 binds to a quaternary epitope at the top of RABV-G, bridging domains and stabilizing RABV-G protomers in a prefusion state. RABV-G trimerization involves side-to-side interactions between the central α helix and adjacent loops, rather than contacts between central helices, and interactions among the fusion loops at the glycoprotein base. These results provide a basis from which to develop improved rabies vaccines based on RABV-G stabilized in the prefusion conformation.

15.
PLoS Biol ; 3(1): e7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15630479

RESUMO

In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH), in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development, including many transcription factors. These highly conserved non-coding sequences are likely to form part of the genomic circuitry that uniquely defines vertebrate development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Sequências Reguladoras de Ácido Nucleico , Takifugu/genética , Animais , Sequência Conservada , Bases de Dados Genéticas , Elementos Facilitadores Genéticos , Proteínas do Olho/metabolismo , Genoma , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Família Multigênica , Proteínas de Neoplasias/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB2 , Análise de Sequência de DNA , Especificidade da Espécie , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
16.
BMC Dev Biol ; 7: 100, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17760977

RESUMO

BACKGROUND: Comparative genomics is currently one of the most popular approaches to study the regulatory architecture of vertebrate genomes. Fish-mammal genomic comparisons have proved powerful in identifying conserved non-coding elements likely to be distal cis-regulatory modules such as enhancers, silencers or insulators that control the expression of genes involved in the regulation of early development. The scientific community is showing increasing interest in characterizing the function, evolution and language of these sequences. Despite this, there remains little in the way of user-friendly access to a large dataset of such elements in conjunction with the analysis and the visualization tools needed to study them. DESCRIPTION: Here we present CONDOR (COnserved Non-coDing Orthologous Regions) available at: http://condor.fugu.biology.qmul.ac.uk. In an interactive and intuitive way the website displays data on > 6800 non-coding elements associated with over 120 early developmental genes and conserved across vertebrates. The database regularly incorporates results of ongoing in vivo zebrafish enhancer assays of the CNEs carried out in-house, which currently number approximately 100. Included and highlighted within this set are elements derived from duplication events both at the origin of vertebrates and more recently in the teleost lineage, thus providing valuable data for studying the divergence of regulatory roles between paralogs. CONDOR therefore provides a number of tools and facilities to allow scientists to progress in their own studies on the function and evolution of developmental cis-regulation. CONCLUSION: By providing access to data with an approachable graphics interface, the CONDOR database presents a rich resource for further studies into the regulation and evolution of genes involved in early development.


Assuntos
Sequência Conservada , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Vertebrados/genética , Animais , Sequência de Bases , Biologia Computacional , Evolução Molecular , Filogenia
17.
Sci Rep ; 7(1): 12713, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983085

RESUMO

In response to immunization, B-cells generate a repertoire of antigen-specific antibodies. Antibody-based immunotherapies hold great promise for treating a variety of diseases in humans. Application of antibody-based immunotherapy in cats is limited by the lack of species-specific complete sequences for mRNAs encoding rearranged heavy and light chain immunoglobulins in B cells. To address this barrier, we isolated mRNAs from feline peripheral blood mononuclear cells (PBMCs), and used available immunoglobulin sequences and 5' and 3' RACE to clone and sequence heavy and light chain immunoglobulin mRNAs. We recovered mRNA from PBMCs from two cats, cloned and sequenced the variable and constant domains of the feline heavy chains of IgG1a (IGHG1a), IgG2 (IGHG2), and IgA (IGHA), and the light chains (lambda and kappa). Using these sequences, we prepared two bicistronic vectors for mammalian expression of a representative feline heavy (IGHG1a) together with a light (lambda or kappa) chain. Here we report novel feline Ig sequences, a technique to express antigen-specific felinized monoclonal antibodies, and the initial characterization of a functional felinized monoclonal antibody against feline panleukopenia virus.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Vírus da Panleucopenia Felina/imunologia , Panleucopenia Felina/terapia , Imunoglobulina A/genética , Imunoglobulina G/genética , RNA Mensageiro/genética , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Linfócitos B/imunologia , Gatos , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/biossíntese , Cadeias kappa de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/biossíntese , Cadeias lambda de Imunoglobulina/genética , Análise de Sequência de RNA
18.
G3 (Bethesda) ; 3(5): 815-25, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23550128

RESUMO

Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.


Assuntos
Autofagia/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Genes Modificadores/genética , Testes Genéticos , Fatores de Transcrição/metabolismo , Alelos , Animais , Proliferação de Células , Drosophila melanogaster/citologia , Genes de Insetos , Loci Gênicos/genética , Genótipo , Mutagênese Insercional/genética , Mutação/genética , Fenótipo , Interferência de RNA , Receptores Notch/metabolismo , Reprodutibilidade dos Testes , Asas de Animais/anatomia & histologia , Asas de Animais/citologia
19.
PLoS One ; 6(6): e21498, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731768

RESUMO

BACKGROUND: Mutations in the SHOX gene are responsible for Leri-Weill Dyschondrosteosis, a disorder characterised by mesomelic limb shortening. Recent investigations into regulatory elements surrounding SHOX have shown that deletions of conserved non-coding elements (CNEs) downstream of the SHOX gene produce a phenotype indistinguishable from Leri-Weill Dyschondrosteosis. As this gene is not found in rodents, we used zebrafish as a model to characterise the expression pattern of the shox gene across the whole embryo and characterise the enhancer domains of different CNEs associated with this gene. METHODOLOGY/PRINCIPAL FINDINGS: Expression of the shox gene in zebrafish was identified using in situ hybridization, with embryos showing expression in the blood, putative heart, hatching gland, brain pharyngeal arch, olfactory epithelium, and fin bud apical ectodermal ridge. By identifying sequences showing 65% identity over at least 40 nucleotides between Fugu, human, dog and opossum we uncovered 35 CNEs around the shox gene. These CNEs were compared with CNEs previously discovered by Sabherwal et al., resulting in the identification of smaller more deeply conserved sub-sequence. Sabherwal et al.'s CNEs were assayed for regulatory function in whole zebrafish embryos resulting in the identification of additional tissues under the regulatory control of these CNEs. CONCLUSION/SIGNIFICANCE: Our results using whole zebrafish embryos have provided a more comprehensive picture of the expression pattern of the shox gene, and a better understanding of its regulation via deeply conserved noncoding elements. In particular, we identify additional tissues under the regulatory control of previously identified SHOX CNEs. We also demonstrate the importance of these CNEs in evolution by identifying duplicated shox CNEs and more deeply conserved sub-sequences within already identified CNEs.


Assuntos
Sequência Conservada/genética , DNA Intergênico/genética , Embrião não Mamífero/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Duplicados/genética , Loci Gênicos/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Takifugu/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
20.
PLoS One ; 2(4): e366, 2007 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-17426814

RESUMO

The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have not yet been reported. We show that 11 ancient genomic DNA signatures, conserved from the pufferfish Takifugu (Fugu) rubripes to man, are distributed throughout the introns of human GLI3. They map within larger conserved non-coding elements (CNEs) that are found in the tetrapod lineage. Full length CNEs transiently transfected into human cell cultures acted as cell type specific enhancers of gene transcription. The regulatory potential of these elements is conserved and was exploited to direct tissue specific expression of a reporter gene in zebrafish embryos. Assays of deletion constructs revealed that the human-Fugu conserved sequences within the GLI3 intronic CNEs were essential but not sufficient for full-scale transcriptional activation. The enhancer activity of the CNEs is determined by a combinatorial effect of a core sequence conserved between human and teleosts (Fugu) and flanking tetrapod-specific sequences, suggesting that successive clustering of sequences with regulatory potential around an ancient, highly conserved nucleus might be a possible mechanism for the evolution of cis-acting regulatory elements.


Assuntos
Sequência Conservada , Elementos Facilitadores Genéticos , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , DNA , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Filogenia , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA