Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469327

RESUMO

SUMMARY: Here, we introduce RatesTools, an automated pipeline to infer de novo mutation rates from parent-offspring trio data of diploid organisms. By providing a reference genome and high-coverage, whole-genome resequencing data of a minimum of three individuals (sire, dam and offspring), RatesTools provides a list of candidate de novo mutations and calculates a putative mutation rate. RatesTools uses several quality filtering steps, such as discarding sites with low mappability and highly repetitive regions, as well as sites with low genotype and mapping qualities to find potential de novo mutations. In addition, RatesTools implements several optional filters based on post hoc assumptions of the heterozygosity and mutation rate of the organism. Filters are highly customizable to user specifications in order to maximize utility across a wide range of applications. AVAILABILITY AND IMPLEMENTATION: RatesTools is freely available at https://github.com/campanam/RatesTools under a Creative Commons Zero (CC0) license. The pipeline is implemented in Nextflow (Di Tommaso et al., 2017), Ruby (http://www.ruby-lang.org), Bash (https://www.gnu.org/software/bash/) and R (R Core Team, 2020) with reliance upon several other freely available tools. RatesTools is compatible with macOS and Linux operating systems. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mutação em Linhagem Germinativa , Software , Humanos , Linhagem , Genoma , Análise de Sequência de DNA
2.
J Hered ; 115(1): 32-44, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37846510

RESUMO

Genetic and genomic data are increasingly used to aid conservation management of endangered species by providing insights into evolutionary histories, factors associated with extinction risks, and potential for future adaptation. For the 'Alala, or Hawaiian crow (Corvus hawaiiensis), genetic concerns include negative correlations between inbreeding and hatching success. However, it is unclear if low genetic diversity and inbreeding depression are consequences of a historical population bottleneck, or if 'Alala had historically low genetic diversity that predated human influence, perhaps as a result of earlier declines or founding events. In this study, we applied a hybridization-based sequence capture to generate a genome-wide single nucleotide polymorphism (SNP) dataset for comparing historical specimens collected in the 1890s, when 'Alala were more numerous, to samples taken between 1973 and 1998, when 'Alala population densities were near the lowest documented levels in the wild, prior to all individuals being collected for captive rearing. We found low genome-wide diversity in both sample groups, however, the modern sample group (1973 to 1998 cohort) exhibited relatively fewer polymorphic alleles, a lower proportion of polymorphic loci, and lower observed heterozygosity, consistent with a population decline and potential bottleneck effects. These results combined with a current low population size highlight the importance of continued efforts by conservation managers to mitigate inbreeding and maintain founder representation to preserve what genetic diversity remains.


Assuntos
Corvos , Humanos , Animais , Corvos/genética , Variação Genética , Havaí , Endogamia , Genoma , Espécies em Perigo de Extinção
3.
J Hered ; 114(4): 326-340, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36869776

RESUMO

The unprecedented rise in the number of new and emerging infectious diseases in the last quarter century poses direct threats to human and wildlife health. The introduction to the Hawaiian archipelago of Plasmodium relictum and the mosquito vector that transmits the parasite has led to dramatic losses in endemic Hawaiian forest bird species. Understanding how mechanisms of disease immunity to avian malaria may evolve is critical as climate change facilitates increased disease transmission to high elevation habitats where malaria transmission has historically been low and the majority of the remaining extant Hawaiian forest bird species now reside. Here, we compare the transcriptomic profiles of highly susceptible Hawai'i 'amakihi (Chlorodrepanis virens) experimentally infected with P. relictum to those of uninfected control birds from a naïve high elevation population. We examined changes in gene expression profiles at different stages of infection to provide an in-depth characterization of the molecular pathways contributing to survival or mortality in these birds. We show that the timing and magnitude of the innate and adaptive immune response differed substantially between individuals that survived and those that succumbed to infection, and likely contributed to the observed variation in survival. These results lay the foundation for developing gene-based conservation strategies for Hawaiian honeycreepers by identifying candidate genes and cellular pathways involved in the pathogen response that correlate with a bird's ability to recover from malaria infection.


Assuntos
Malária Aviária , Passeriformes , Animais , Humanos , Malária Aviária/genética , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Havaí/epidemiologia , Passeriformes/genética , Expressão Gênica , Imunidade
4.
J Hered ; 114(5): 529-538, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37246890

RESUMO

We provide novel genomic resources to help understand the genomic traits involved in elephant health and to aid conservation efforts. We sequence 11 elephant genomes (5 African savannah, 6 Asian) from North American zoos, including 9 de novo assemblies. We estimate elephant germline mutation rates and reconstruct demographic histories. Finally, we provide an in-solution capture assay to genotype Asian elephants. This assay is suitable for analyzing degraded museum and noninvasive samples, such as feces and hair. The elephant genomic resources we present here should allow for more detailed and uniform studies in the future to aid elephant conservation efforts and disease research.


Assuntos
Elefantes , Animais , Elefantes/genética , Genômica , Genoma , Mapeamento Cromossômico , Animais de Zoológico , Mutação em Linhagem Germinativa
5.
Mol Ecol ; 31(7): 1995-2012, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119154

RESUMO

Conservation benefits from incorporating genomics to explore the impacts of population declines, inbreeding, loss of genetic variation and hybridization. Here we use the near-extinct Mariana Islands reedwarbler radiation to showcase how ancient DNA approaches can allow insights into the population dynamics of extinct species and threatened populations for which historical museum specimens or material with low DNA yield (e.g., scats, feathers) are the only sources for DNA. Despite their having paraphyletic mitochondrial DNA (mtDNA), nuclear single nucleotide polymorphisms (SNPs) support the distinctiveness of critically endangered Acrocephalus hiwae and the other three species in the radiation that went extinct between the 1960s and 1990s. Two extinct species, A. yamashinae and A. luscinius, were deeply divergent from each other and from a third less differentiated lineage containing A. hiwae and extinct A. nijoi. Both mtDNA and SNPs suggest that the two isolated populations of A. hiwae from Saipan and Alamagan Islands are sufficiently distinct to warrant subspecies recognition and separate conservation management. We detected no significant differences in genetic diversity or inbreeding between Saipan and Alamagan, nor strong signatures of geographical structuring within either island. However, the implications of possible signatures of inbreeding in both Saipan and Alamagan, and long-term population declines in A. hiwae that pre-date modern anthropogenic threats require further study with denser population sampling. Our study highlights the value that conservation genomics studies of island radiations have as windows onto the possible future for the world's biota as climate change and habitat destruction increasingly fragment their ranges and contribute to rapid declines in population abundances.


Assuntos
DNA Mitocondrial , Genômica , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Variação Genética/genética , Geografia , Endogamia , Filogenia
6.
Mol Ecol ; 29(21): 4074-4090, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911576

RESUMO

Janzen's influential "mountain passes are higher in the tropics" hypothesis predicts restricted gene flow and genetic isolation among populations spanning elevational gradients in the tropics. Few studies have tested this prediction, and studies that focus on population genetic structure in Southeast Asia are particularly underrepresented in the literature. Here, we test the hypothesis that mountain treeshrews (Tupaia montana) exhibit limited dispersal across their broad elevational range which spans ~2,300 m on two peaks in Kinabalu National Park (KNP) in Borneo: Mt Tambuyukon (MT) and Mt Kinabalu (MK). We sampled 83 individuals across elevations on both peaks and performed population genomics analyses on mitogenomes and single nucleotide polymorphisms from 4,106 ultraconserved element loci. We detected weak genetic structure and infer gene flow both across elevations and between peaks. We found higher genetic differentiation on MT than MK despite its lower elevation and associated environmental variation. This implies that, contrary to our hypothesis, genetic structure in this system is not primarily shaped by elevation. We propose that this pattern may instead be the result of historical processes and limited upslope gene flow on MT. Importantly, our results serve as a foundational estimate of genetic diversity and population structure from which to track potential future effects of climate change on mountain treeshrews in KNP, an important conservation stronghold for the mountain treeshrew and other montane species.


Assuntos
Altitude , Fluxo Gênico , Animais , Bornéu , Estruturas Genéticas , Humanos , Mamíferos
7.
J Hered ; 111(1): 21-32, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31723957

RESUMO

The Hawai'ian honeycreepers (drepanids) are a classic example of adaptive radiation: they adapted to a variety of novel dietary niches, evolving a wide range of bill morphologies. Here we investigated genomic diversity, demographic history, and genes involved in bill morphology phenotypes in 2 honeycreepers: the 'akiapola'au (Hemignathus wilsoni) and the Hawai'i 'amakihi (Chlorodrepanis virens). The 'akiapola'au is an endangered island endemic, filling the "woodpecker" niche by using a unique bill morphology, while the Hawai'i 'amakihi is a dietary generalist common on the islands of Hawai'i and Maui. We de novo sequenced the 'akiapola'au genome and compared it to the previously sequenced 'amakihi genome. The 'akiapola'au is far less heterozygous and has a smaller effective population size than the 'amakihi, which matches expectations due to its smaller census population and restricted ecological niche. Our investigation revealed genomic islands of divergence, which may be involved in the honeycreeper radiation. Within these islands of divergence, we identified candidate genes (including DLK1, FOXB1, KIF6, MAML3, PHF20, RBP1, and TIMM17A) that may play a role in honeycreeper adaptations. The gene DLK1, previously shown to influence Darwin's finch bill size, may be related to honeycreeper bill morphology evolution, while the functions of the other candidates remain unknown.


Assuntos
Adaptação Biológica , Especiação Genética , Passeriformes/genética , Animais , Ecossistema , Evolução Molecular , Feminino , Variação Genética , Genoma , Masculino , Anotação de Sequência Molecular , Passeriformes/anatomia & histologia
8.
Emerg Infect Dis ; 23(9): 1611-1612, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820367

RESUMO

White-nose syndrome, first diagnosed in North America in 2006, causes mass deaths among bats in North America. We found the causative fungus, Pseudogymnoascus destructans, in a 1918 sample collected in Europe, where bats have now adapted to the fungus. These results are consistent with a Eurasian origin of the pathogen.


Assuntos
Ascomicetos/genética , Quirópteros/microbiologia , DNA Fúngico/genética , Micoses/história , Micoses/veterinária , Animais , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , DNA Fúngico/isolamento & purificação , França/epidemiologia , História do Século XIX , História do Século XX , História do Século XXI , Micoses/microbiologia , Micoses/mortalidade , América do Norte/epidemiologia , Nariz/microbiologia , Nariz/patologia , Análise de Sequência de DNA , Síndrome
9.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28878055

RESUMO

Both large-wildlife loss and climatic changes can independently influence the prevalence and distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger community-level effects in low-productivity areas, we hypothesized that these perturbations would have interactive effects on disease risk. We experimentally tested this hypothesis by measuring tick abundance and the prevalence of tick-borne pathogens (Coxiella burnetii and Rickettsia spp.) within long-term, size-selective, large-herbivore exclosures replicated across a precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested for a subset of months, total tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected the abundance of the three dominant tick species, and this effect varied strongly over time, likely due to differences among species in their host associations, seasonality, and other ecological characteristics. Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall levels, or tick species, suggesting that exposure risk will respond to defaunation and climate change in proportion to total tick abundance. These findings demonstrate interacting effects of defaunation and aridity that increase disease risk, and they highlight the need to incorporate ecological context when predicting effects of wildlife loss on zoonotic disease dynamics.


Assuntos
Animais Selvagens , Mudança Climática , Doenças Transmitidas por Carrapatos/veterinária , Carrapatos , África Oriental , Animais , Densidade Demográfica , Dinâmica Populacional , Chuva , Doenças Transmitidas por Carrapatos/epidemiologia
10.
BMC Genomics ; 17(1): 1013, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27938335

RESUMO

BACKGROUND: The African wild dog (Lycaon pictus) is an endangered African canid threatened by severe habitat fragmentation, human-wildlife conflict, and infectious disease. A highly specialized carnivore, it is distinguished by its social structure, dental morphology, absence of dewclaws, and colorful pelage. RESULTS: We sequenced the genomes of two individuals from populations representing two distinct ecological histories (Laikipia County, Kenya and KwaZulu-Natal Province, South Africa). We reconstructed population demographic histories for the two individuals and scanned the genomes for evidence of selection. CONCLUSIONS: We show that the African wild dog has undergone at least two effective population size reductions in the last 1,000,000 years. We found evidence of Lycaon individual-specific regions of low diversity, suggestive of inbreeding or population-specific selection. Further research is needed to clarify whether these population reductions and low diversity regions are characteristic of the species as a whole. We documented positive selection on the Lycaon mitochondrial genome. Finally, we identified several candidate genes (ASIP, MITF, MLPH, PMEL) that may play a role in the characteristic Lycaon pelage.


Assuntos
Animais Selvagens/genética , Canidae/genética , Espécies em Perigo de Extinção , Genoma , Genômica , Animais , Cromossomos , Genética Populacional , Genoma Mitocondrial , Geografia , Polimorfismo de Nucleotídeo Único , Seleção Genética
11.
Sci Rep ; 14(1): 17047, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048633

RESUMO

Museum genomics provide an opportunity to investigate population demographics of extinct species, especially valuable when research prior to extinction was minimal. The Bachman's warbler (Vermivora bachmanii) is hypothesized to have gone extinct due to loss of its specialized habitat. However, little is known about other potential contributing factors such as natural rarity or changes to connectivity following habitat fragmentation. We examined mitochondrial DNA (mtDNA) and genome-wide SNPs using specimens collected from breeding and migration sites across the range of the Bachman's warbler. We found no signals of strong population structuring across the breeding range of Bachman's warblers in both mtDNA and genome-wide SNPs. Thus, long-term population isolation did not appear to be a significant contributor to the extinction of the Bachman's warbler. Instead, our findings support the theory that Bachman's warblers underwent a rapid decline likely driven by habitat destruction, which may have been exacerbated by the natural rarity, habitat specificity and low genetic diversity of the species.


Assuntos
DNA Mitocondrial , Extinção Biológica , Genômica , Museus , Polimorfismo de Nucleotídeo Único , Animais , Genômica/métodos , DNA Mitocondrial/genética , Aves Canoras/genética , Ecossistema , Variação Genética , América do Norte , Genética Populacional
12.
Mol Ecol ; 22(21): 5340-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24118338

RESUMO

Animal exchange networks have been shown to play an important role in determining gene flow among domestic animal populations. The Silk Road is one of the oldest continuous exchange networks in human history, yet its effectiveness in facilitating animal exchange across large geographical distances and topographically challenging landscapes has never been explicitly studied. Horses are known to have been traded along the Silk Roads; however, extensive movement of horses in connection with other human activities may have obscured the genetic signature of the Silk Roads. To investigate the role of the Silk Roads in shaping the genetic structure of horses in eastern Eurasia, we analysed microsatellite genotyping data from 455 village horses sampled from 17 locations. Using least-cost path methods, we compared the performance of models containing the Silk Roads as corridors for gene flow with models containing single landscape features. We also determined whether the recent isolation of former Soviet Union countries from the rest of Eurasia has affected the genetic structure of our samples. The overall level of genetic differentiation was low, consistent with historically high levels of gene flow across the study region. The spatial genetic structure was characterized by a significant, albeit weak, pattern of isolation by distance across the continent with no evidence for the presence of distinct genetic clusters. Incorporating landscape features considerably improved the fit of the data; however, when we controlled for geographical distance, only the correlation between genetic differentiation and the Silk Roads remained significant, supporting the effectiveness of this ancient trade network in facilitating gene flow across large geographical distances in a topographically complex landscape.


Assuntos
Comércio , Evolução Molecular , Fluxo Gênico , Cavalos/genética , Animais , Arqueologia , Ásia , Europa Oriental , Frequência do Gene , Variação Genética , Genótipo , Geografia , Humanos , Repetições de Microssatélites , Modelos Genéticos , Análise de Componente Principal
13.
Curr Biol ; 32(20): R1070-R1072, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36283365

RESUMO

Robert Fleischer and colleagues introduce the unique songbird fauna of Hawaii and the threats it faces.


Assuntos
Aves Canoras , Animais , Havaí , Filogenia
14.
PLoS Negl Trop Dis ; 16(8): e0010689, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939523

RESUMO

Understanding patterns of diversification, genetic exchange, and pesticide resistance in arthropod disease vectors is necessary for effective population management. With the availability of next-generation sequencing technologies, one of the best approaches for surveying such patterns involves the simultaneous genotyping of many samples for a large number of genetic markers. To this end, the targeting of gene sequences of known function can be a cost-effective strategy. One insect group of substantial health concern are the mosquito taxa that make up the Culex pipiens complex. Members of this complex transmit damaging arboviruses and filariae worms to humans, as well as other pathogens such as avian malaria parasites that are detrimental to birds. Here we describe the development of a targeted, gene-based assay for surveying genetic diversity and population structure in this mosquito complex. To test the utility of this assay, we sequenced samples from several members of the complex, as well as from distinct populations of the relatively under-studied Culex quinquefasciatus. The data generated was then used to examine taxonomic divergence and population clustering between and within these mosquitoes. We also used this data to investigate genetic variants present in our samples that had previously been shown to correlate with insecticide-resistance. Broadly, our gene capture approach successfully enriched the genomic regions of interest, and proved effective for facilitating examinations of taxonomic divergence and geographic clustering within the Cx. pipiens complex. It also allowed us to successfully survey genetic variation associated with insecticide resistance in Culex mosquitoes. This enrichment protocol will be useful for future studies that aim to understand the genetic mechanisms underlying the evolution of these ubiquitous and increasingly damaging disease vectors.


Assuntos
Culex , Culicidae , Animais , Variação Genética , Humanos , Resistência a Inseticidas/genética , Mosquitos Vetores/genética
15.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250809

RESUMO

The big cats (genus Panthera) represent some of the most popular and charismatic species on the planet. Although some reference genomes are available for this clade, few are at the chromosome level, inhibiting high-resolution genomic studies. We assembled genomes from 3 members of the genus, the tiger (Panthera tigris), the snow leopard (Panthera uncia), and the African leopard (Panthera pardus pardus), at chromosome or near-chromosome level. We used a combination of short- and long-read technologies, as well as proximity ligation data from Hi-C technology, to achieve high continuity and contiguity for each individual. We hope that these genomes will aid in further evolutionary and conservation research of this iconic group of mammals.


Assuntos
Panthera , Tigres , Animais , Panthera/genética , Tigres/genética , Genoma , Cromossomos/genética
16.
Mol Ecol Resour ; 22(4): 1345-1361, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34779133

RESUMO

Understanding predator population dynamics is important for conservation management because of the critical roles predators play within ecosystems. Noninvasive genetic sampling methods are useful for the study of predators like canids that can be difficult to capture or directly observe. Here, we introduce the FAECES* method (Fast and Accurate Enrichment of Canid Excrement for Species* and other analyses) which expands the toolbox for canid researchers and conservationists by using in-solution hybridization sequence capture to produce single nucleotide polymorphism (SNP) genotypes for multiple canid species from scat-derived DNA using a single enrichment. We designed a set of hybridization probes to genotype both coyotes (Canis latrans) and kit foxes (Vulpes macrotis) at hundreds of polymorphic SNP loci and we tested the probes on both tissues and field-collected scat samples. We enriched and genotyped by sequencing 52 coyote and 70 kit fox scats collected in and around a conservation easement in the Nevada Mojave Desert. We demonstrate that the FAECES* method produces genotypes capable of differentiating coyotes and kit foxes, identifying individuals and their sex, and estimating genetic diversity and effective population sizes, even using highly degraded, low-quantity DNA extracted from scat. We found that the study area harbours a large and diverse population of kit foxes and a relatively smaller population of coyotes. By replicating our methods in the future, conservationists can assess the impacts of management decisions on canid populations. The method can also be adapted and applied more broadly to enrich and sequence multiple loci from any species of interest using scat or other noninvasive genetic samples.


Assuntos
Coiotes , Ecossistema , Animais , Coiotes/genética , DNA , Raposas/genética , Humanos , Polimorfismo de Nucleotídeo Único
17.
Mol Ecol ; 20(22): 4756-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22004244

RESUMO

Broomcorn millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, with several lines of recent evidence indicating that it was grown in northern China from at least 10,000 cal bp. Additionally, a cluster of archaeobotanical records of P. miliaceum dated to at least 7000 cal bp exists in eastern Europe. These two centres of early records could either represent independent domestications or cross-continental movement of this cereal that would predate that of any other crop by some 2 millennia. Here, we analysed genetic diversity among 98 landrace accessions from across Eurasia using 16 microsatellite loci, to explore phylogeographic structure in the Old World range of this historically important crop. The major genetic split in the data divided the accessions into an eastern and a western grouping with an approximate boundary in northwestern China. A substantial number of accessions belonging to the 'western' genetic group were also found in northeastern China. Further resolution subdivided the western and eastern genepools into 2 and 4 clusters respectively, each showing clear geographic patterning. The genetic data are consistent with both the single and multiple domestication centre hypotheses and add specific detail to what these hypotheses would entail regarding the spread of broomcorn millet. Discrepancies exist between the predictions from the genetic data and the current archaeobotanical record, highlighting priorities for investigation into early farming in Central Asia.


Assuntos
Variação Genética , Panicum/genética , Filogeografia , Ásia , Ásia Central , Teorema de Bayes , Produtos Agrícolas/genética , DNA de Plantas/genética , Europa Oriental , Técnicas de Genotipagem , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA
18.
Ecol Evol ; 11(9): 4935-4944, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976860

RESUMO

The malaria parasite Plasmodium relictum (lineage GRW4) was introduced less than a century ago to the native avifauna of Hawai'i, where it has since caused major declines of endemic bird populations. One of the native bird species that is frequently infected with GRW4 is the Hawai'i 'amakihi (Chlorodrepanis virens). To achieve a better understanding of the transcriptional activities of this virulent parasite, we performed a controlled challenge experiment of 15 'amakihi that were infected with GRW4. Blood samples containing malaria parasites were collected at two time points (intermediate and peak infection stages) from host individuals that were either experimentally infected by mosquitoes or inoculated with infected blood. We then used RNA sequencing to assemble a high-quality blood transcriptome of P. relictum GRW4, allowing us to quantify parasite expression levels inside individual birds. We found few significant differences (one to two transcripts) in GRW4 expression levels between host infection stages and between inoculation methods. However, 36 transcripts showed differential expression levels among all host individuals, indicating a potential presence of host-specific gene regulation across hosts. To reduce the extinction risk of the remaining native bird species in Hawai'i, genetic resources of the local Plasmodium lineage are needed to enable further molecular characterization of this parasite. Our newly built Hawaiian GRW4 transcriptome assembly, together with analyses of the parasite's transcriptional activities inside the blood of Hawai'i 'amakihi, can provide us with important knowledge on how to combat this deadly avian disease in the future.

19.
Aging Cell ; 20(7): e13414, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118182

RESUMO

Age-associated DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of age ("epigenetic clocks") in humans, mice, dogs, and other species. Here we present epigenetic clocks for African and Asian elephants. These clocks were developed using novel DNA methylation profiles of 140 elephant blood samples of known age, at loci that are highly conserved between mammalian species, using a custom Infinium array (HorvathMammalMethylChip40). We present epigenetic clocks for Asian elephants (Elephas maximus), African elephants (Loxodonta africana), and both elephant species combined. Two additional human-elephant clocks were constructed by combining human and elephant samples. Epigenome-wide association studies identified elephant age-related CpGs and their proximal genes. The products of these genes play important roles in cellular differentiation, organismal development, metabolism, and circadian rhythms. Intracellular events observed to change with age included the methylation of bivalent chromatin domains, and targets of polycomb repressive complexes. These readily available epigenetic clocks can be used for elephant conservation efforts where accurate estimates of age are needed to predict demographic trends.


Assuntos
Envelhecimento/genética , Epigenômica/métodos , Animais , Elefantes , Metilação
20.
Plant Genome ; 14(1): e20081, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33543599

RESUMO

Foxtail millet [Setaria italica (L.) P. Beauv.] is the second most important millet species globally and is adapted to cultivation in diverse environments. Like its wild progenitor, green foxtail [S. viridis (L.) P. Beauv.], it is a model species for C4 photosynthetic pathways and stress tolerance genes in related bioenergy crops. We addressed questions regarding the evolution and spread of foxtail millet through a population genomic study of landraces from across its cultivated range in Europe, Asia, and Africa. We sought to determine population genomic structure and the relationship of domesticated lineages relative to green foxtail. Further, we aimed to identify genes involved in environmental stress tolerance that have undergone differential selection between geographical and genetic groups. Foxtail millet landrace accessions (n = 328) and green foxtail accessions (n = 12) were sequenced by genotyping-by-sequencing (GBS). After filtering, 5,677 single nucleotide polymorphisms (SNPs) were retained for the combined foxtail millet-green foxtail dataset and 5,020 for the foxtail millet dataset. We extended geographic coverage of green foxtail by including previously published GBS sequence tags, yielding a 4,515-SNP dataset for phylogenetic reconstruction. All foxtail millet samples were monophyletic relative to green foxtail, suggesting a single origin of foxtail millet, although no group of foxtail millet was clearly the most ancestral. Four genetic clusters were found within foxtail millet, each with a distinctive geographical distribution. These results, together with archaeobotanical evidence, suggest plausible routes of spread of foxtail millet. Selection scans identified nine candidate genes potentially involved in environmental adaptations, particularly to novel climates encountered, as domesticated foxtail millet spread to new altitudes and latitudes.


Assuntos
Setaria (Planta) , África , Ásia , Europa (Continente) , Genótipo , Metagenômica , Filogenia , Setaria (Planta)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA