Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(1): 52-70, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048423

RESUMO

Many COVID-19 survivors have post-COVID-19 conditions, and females are at a higher risk. We sought to determine (1) how protein levels change from acute to post-COVID-19 conditions, (2) whether females have a plasma protein signature different from that of males, and (3) which biological pathways are associated with COVID-19 when compared to restrictive lung disease. We measured protein levels in 74 patients on the day of admission and at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were measured by routine pulmonary function testing. Proteins associated with six key lipid-related pathways increased from admission to 3 and 6 months; conversely, proteins related to innate immune responses and vasoconstriction-related proteins decreased. Multiple biological functions were regulated differentially between females and males. Concentrations of eight proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732-0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676-0.737) for DLCO, %. Lipid biology may drive evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased over that period. (ProteomeXchange identifiers: PXD041762, PXD029437).


Assuntos
COVID-19 , Proteômica , Masculino , Feminino , Humanos , Pulmão , Capacidade Vital , Doença Crônica , Lipídeos
2.
Eur Respir J ; 61(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137590

RESUMO

BACKGROUND: Autoimmunity has been reported in patients with severe coronavirus disease 2019 (COVID-19). We investigated whether anti-nuclear/extractable-nuclear antibodies (ANAs/ENAs) were present up to a year after infection, and if they were associated with the development of clinically relevant post-acute sequalae of COVID-19 (PASC) symptoms. METHODS: A rapid-assessment line immunoassay was used to measure circulating levels of ANAs/ENAs in 106 convalescent COVID-19 patients with varying acute phase severities at 3, 6 and 12 months post-recovery. Patient-reported fatigue, cough and dyspnoea were recorded at each time point. Multivariable logistic regression model and receiver operating curves were used to test the association of autoantibodies with patient-reported outcomes and pro-inflammatory cytokines. RESULTS: Compared to age- and sex-matched healthy controls (n=22) and those who had other respiratory infections (n=34), patients with COVID-19 had higher detectable ANAs at 3 months post-recovery (p<0.001). The mean number of ANA autoreactivities per individual decreased between 3 and 12 months (from 3.99 to 1.55) with persistent positive titres associated with fatigue, dyspnoea and cough severity. Antibodies to U1-snRNP and anti-SS-B/La were both positively associated with persistent symptoms of fatigue (p<0.028, area under the curve (AUC) 0.86) and dyspnoea (p<0.003, AUC=0.81). Pro-inflammatory cytokines such as tumour necrosis factor (TNF)-α and C-reactive protein predicted the elevated ANAs at 12 months. TNF-α, D-dimer and interleukin-1ß had the strongest association with symptoms at 12 months. Regression analysis showed that TNF-α predicted fatigue (ß=4.65, p=0.004) and general symptomaticity (ß=2.40, p=0.03) at 12 months. INTERPRETATION: Persistently positive ANAs at 12 months post-COVID are associated with persisting symptoms and inflammation (TNF-α) in a subset of COVID-19 survivors. This finding indicates the need for further investigation into the role of autoimmunity in PASC.


Assuntos
Autoanticorpos , COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , Fator de Necrose Tumoral alfa , Tosse , Anticorpos Antinucleares , Citocinas , Fadiga
3.
Respir Res ; 24(1): 218, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679687

RESUMO

BACKGROUND: Environmental co-exposure to allergen and traffic-related air pollution is common globally and contributes to the exacerbation of respiratory diseases. Individual responses to environmental insults remain variable due to gene-environment interactions. OBJECTIVE: This study examined whether single nucleotide polymorphisms (SNPs) in lung cell surface receptor genes modifies lung function change and immune cell recruitment in allergen-sensitized individuals exposed to diesel exhaust (DE) and allergen. METHODS: In this randomized, double-blinded, four-arm, crossover study, 13 allergen-sensitized participants underwent allergen inhalation challenge following a 2-hour exposure to DE, particle-depleted diesel exhaust (PDDE) or filtered air (FA). Lung function tests and bronchoscopic sample collection were performed up to 48 h after exposures. Transient receptor potential channel (TRPA1 and TRPV1) and toll-like receptor (TLR2 and TLR4) risk alleles were used to construct an unweighted genetic risk score (GRS). Exposure-by-GRS interactions were tested using mixed-effects models. RESULTS: In participants with high GRS, allergen exposure was associated with an increase in airway hyperresponsiveness (AHR) when co-exposed to PDDE (p = 0.03) but not FA or DE. FA and PDDE also were associated with a relative increase in macrophages and decrease in lymphocytes in bronchoalveolar lavage. CONCLUSIONS: TRPs and TLRs variants are associated with increased AHR and altered immune cellularity in allergen-exposed individuals. This effect is blunted by DE exposure, suggesting greater influence of unmeasured gene variants as primary meditators of a particulate-rich co-exposure. TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov on December 20, 2013 (NCT02017431).


Assuntos
Poluição do Ar , Canais de Potencial de Receptor Transitório , Humanos , Alérgenos , Estudos Cross-Over , Emissões de Veículos , Receptores Toll-Like
4.
Environ Health ; 22(1): 7, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641507

RESUMO

BACKGROUND: While it is known that exposure to traffic-related air pollution causes an enormous global toll on human health, neurobiological underpinnings therein remain elusive. The study addresses this gap in knowledge. METHODS: We performed the first controlled human exposure study using functional MRI with an efficient order-randomized double-blind crossover study of diesel exhaust (DE) and control (filtered air; FA) in 25 healthy adults (14 males, 11 females; 19-49 years old; no withdrawals). Analyses were carried out using a mixed effects model in FLAME. Z (Gaussianised T/F) statistic images were thresholded non-parametrically using clusters determined by Z > 2.3 and a (corrected) cluster significance threshold of p = 0.05. RESULTS: All 25 adults went through the exposures and functional MRI imaging were collected. Exposure to DE yielded a decrease in functional connectivity compared to exposure to FA, shown through the comparison of DE and FA in post-exposure measurement of functional connectivity. CONCLUSION: We observed short-term pollution-attributable decrements in default mode network functional connectivity. Decrements in brain connectivity causes many detrimental effects to the human body so this finding should guide policy change in air pollution exposure regulation. TRIAL REGISTRATION: University of British Columbia Clinical Research Ethics Board (# H12-03025), Vancouver Coastal Health Ethics Board (# V12-03025), and Health Canada's Research Ethics Board (# 2012-0040).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Masculino , Feminino , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Estudos Cross-Over , Exposição por Inalação , Poluição do Ar/efeitos adversos , Encéfalo/diagnóstico por imagem , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos
5.
Am J Respir Crit Care Med ; 205(9): 1046-1052, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202552

RESUMO

Rationale: There is growing evidence that chronic obstructive pulmonary disease (COPD) can be caused and exacerbated by air pollution exposure. Objectives: To document the impact of short-term air pollution exposure on inflammation markers, proteases, and antiproteases in the lower airways of older adults with and without COPD. Methods: Thirty participants (10 ex-smokers with mild to moderate COPD and 20 healthy participants [9 ex-smokers and 11 never-smokers]), with an average age of 60 years, completed this double-blinded, controlled, human crossover exposure study. Each participant was exposed to filtered air (control) and diesel exhaust (DE), in washout-separated 2-hour periods, in a randomly assigned order. Bronchoscopy was performed 24 hours after exposure to collect lavage. Cell counts were performed on blood and airway samples. ELISAs were performed to measure acute inflammatory proteins, matrix proteinases, and antiproteases in the airway and blood samples. Measurements and Main Results: In former smokers with COPD, but not in the other participants, exposure to DE increased serum amyloid A (effect estimate, 1.67; 95% confidence interval [CI], 1.21-2.30; P = 0.04) and matrix metalloproteinase 10 (effect estimate, 2.61; 95% CI, 1.38-4.91; P = 0.04) in BAL. Circulating lymphocytes were increased after DE exposure (0.14 [95% CI, 0.05-0.24] cells × 109/L; P = 0.03), irrespective of COPD status. Conclusions: A controlled human crossover study of DE exposure reveals that former smokers with COPD may be susceptible to an inflammatory response compared with ex-smokers without COPD or never-smoking healthy control participants. Clinical trial registered with www.clinicaltrials.gov (NCT02236039).


Assuntos
Doença Pulmonar Obstrutiva Crônica , Emissões de Veículos , Idoso , Biomarcadores , Estudos Cross-Over , Humanos , Inflamação , Pessoa de Meia-Idade , Peptídeo Hidrolases , Inibidores de Proteases , Fumantes , Emissões de Veículos/toxicidade
6.
J Allergy Clin Immunol ; 150(2): 477-488.e9, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35367469

RESUMO

BACKGROUND: Exposure to traffic-related air pollution is associated with increased morbidity and mortality. Negative health impact of diesel exhaust (DE) exposure may in part be mediated via epigenetic modulation. Ten-eleven translocation (TET) enzymes catalyze the active DNA demethylation process and play important roles in epigenetic regulation. OBJECTIVES: We sought to assess the expression of TET enzymes in human PBMCs and the differentiation of immune subsets in response to acute DE exposure at a range of concentrations. METHODS: Thirteen healthy participants were recruited for this randomized, double-blind, controlled human exposure study to DE. In this 4-arm crossover study, each participant was exposed for 4 hours to 3 different concentrations of DE (DE diluted to have particulate matter with a diameter of ≤2.5 micron concentration nominally set at 20, 50, and 150 µg/m3) and filtered air. Blood was collected at baseline and 4 and 24 hours after the exposure start time. The composition of PBMCs and their TET enzymes' expression were evaluated with flow cytometry. Cytokines in plasma were measured by electrochemiluminescence multiplex assays. RESULTS: DE exposure decreased the proportion of B cells, TH17 cells, and activated T cells in PBMCs. TET enzymes were upregulated in PBMCs, especially in TH1, TH2, and TH17 cells, at 4 hours following DE exposure. The expression of TET enzymes correlated with proinflammatory cytokine secretion in plasma. CONCLUSIONS: We demonstrated that acute DE exposure impacted peripheral blood leukocyte proportions and TET enzymes' expression in lymphocyte subsets at DE concentration of 50 µg/m3 and above. Our finding suggests that even a modest exposure to air pollution can impact the circulating immune cells via epigenetic modulation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Estudos Cross-Over , Epigênese Genética , Humanos , Material Particulado/efeitos adversos , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
7.
Respir Res ; 23(1): 113, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35509099

RESUMO

With prevalent global air pollution, individuals with certain genetic predispositions and sensitivities are at of higher risk of developing respiratory symptoms including chronic cough. Studies to date have relied on patient-filled questionnaires in epidemiological studies to evaluate the gene-by-environment interactions. In a controlled human exposure study, we evaluated whether genetic risk score (GRS) based on cough-related single-nucleotide polymorphisms (SNPs) are associated with a cough count over 24 h post-exposure to diesel exhaust (DE), a model for traffic-related air pollution. DE is a mixture of several known air pollutants including PM2.5, CO, NO, NO2, and volatile organic compounds. Under closely observed circumstances, we determined that GRS constructed from 7 SNPs related to TRPA1, TRPV1, and NK-2R were correlated with cough count. Selection of channels were based on prior knowledge that SNPs in these channels lead to acute airway inflammation as a result of their increased sensitivity to particulate matter. We performed a linear regression analysis and found a significant, positive correlation between GRS and cough count following DE exposure (p = 0.002, R2 = 0.61) and filtered air (FA) exposure (p = 0.028, R2 = 0.37). Although that correlation was stronger for DE than for FA, we found no significant exposure-by-GRS interaction. In summary, cough-relevant GRS was associated with a higher 24 h cough count in a controlled setting, suggesting that individuals with a high GRS may be more susceptible to developing cough regardless of their exposure. The trend towards this susceptibility being more prominent in the context of traffic-related air pollution remains to be confirmed.Trial registration: ClinicalTrial.gov NCT02236039; NCT0223603. Registered on August 11, 2014, https://clinicaltrials.gov/ct2/show/NCT02236039 .


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Tosse/induzido quimicamente , Tosse/diagnóstico , Tosse/epidemiologia , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Emissões de Veículos/toxicidade
8.
Respir Res ; 23(1): 248, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114491

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) of peroxisome proliferator-activated receptor gamma (PPAR-γ; gene: PPARG) and oxidative stress genes are associated with asthma risk. However, whether such variants modulate responses to dibutyl phthalate (DBP), a common plasticizer associated with increased asthma development, remains unknown. The purpose of this study is to investigate how SNPs in PPARG and oxidative stress genes, as represented by two separate genetic risk scores, modify the impact of DBP exposure on lung function and the airway and systemic response after an inhaled allergen challenge. METHODS: We conducted a double-blinded human crossover study with sixteen allergen-sensitized participants exposed for three hours to DBP and control air on distinct occasions separated by a 4-week washout. Each exposure was followed by an allergen inhalation challenge; subsequently, lung function was measured, and blood and bronchoalveolar lavage (BAL) were collected and analyzed for cell counts and allergen-specific immunoglobulin E (IgE). Genetic risk scores for PPAR-γ (P-GRS; weighted sum of PPARG SNPs rs10865710, rs709158, and rs3856806) and oxidative stress (OS-GRS; unweighted sum of 16 SNPs across multiple genes) were developed, and their ability to modify DBP effects were assessed using linear mixed-effects models. RESULTS: P-GRS and OS-GRS modified DBP effects on allergen-specific IgE in blood at 20 h (interaction effect [95% CI]: 1.43 [1.13 to 1.80], p = 0.005) and 3 h (0.99 [0.98 to 1], p = 0.03), respectively. P-GRS also modified DBP effects on Th2 cells in blood at 3 h (- 25.2 [- 47.7 to - 2.70], p = 0.03) and 20 h (- 39.1 [- 57.9 to - 20.3], p = 0.0005), and Th2 cells in BAL at 24 h (- 4.99 [- 8.97 to - 1.01], p = 0.02). An increasing P-GRS associated with reduced DBP effect on Th2 cells. Neither GRS significantly modified DBP effects on lung function parameters. CONCLUSIONS: PPAR-γ variants modulated several airway and systemic immune responses to the ubiquitous chemical plasticizer DBP. Our results suggest that PPAR-γ variants may play a greater role than those in oxidative stress-related genes in airway allergic responses to DBP. TRIAL REGISTRATION: This study reports results from The Phthalate-Allergen Immune Response Study that was registered on ClinicalTrials.gov with identification NCT02688478.


Assuntos
Asma , Dibutilftalato , Alérgenos , Estudos Cross-Over , Dibutilftalato/toxicidade , Humanos , Imunoglobulina E , PPAR gama/genética , Plastificantes
9.
J Allergy Clin Immunol ; 147(5): 1671-1682, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33069714

RESUMO

BACKGROUND: Epidemiological data show that traffic-related air pollution contributes to the increasing prevalence and severity of asthma. DNA methylation (DNAm) changes may elucidate adverse health effects of environmental exposures. OBJECTIVES: We sought to assess the effects of allergen and diesel exhaust (DE) exposures on global DNAm and its regulation enzymes in human airway epithelium. METHODS: A total of 11 participants, including 7 with and 4 without airway hyperresponsiveness, were recruited for a randomized, double-blind crossover study. Each participant had 3 exposures: filtered air + saline, filtered air + allergen, and DE + allergen. Forty-eight hours postexposure, endobronchial biopsies and bronchoalveolar lavages were collected. Levels of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, 5-methylcytosine, and 5-hydroxymethylcytosine were determined by immunohistochemistry. Cytokines and chemokines in bronchoalveolar lavages were measured by electrochemiluminescence multiplex assays. RESULTS: Predominant DNMT (the most abundant among DNMT1, DNMT3A, and DNMT3B) and predominant TET (the most abundant among TET1, TET2, and TET3) were participant-dependent. 5-Methylcytosine and its regulation enzymes differed between participants with and without airway hyperresponsiveness at baseline (filtered air + saline) and in response to allergen challenge (regardless of DE exposure). Predominant DNMT and predominant TET correlated with lung function. Allergen challenge effect on IL-8 in bronchoalveolar lavages was modified by TET2 baseline levels in the epithelium. CONCLUSIONS: Response to allergen challenge is associated with key DNAm regulation enzymes. This relationship is generally unaltered by DE coexposure but is rather dependent on airway hyperresponsiveness status. These enzymes therefore warranted further inquiry regarding their potential in diagnosis, prognosis, and treatment of asthma.


Assuntos
Poluição do Ar , Alérgenos/administração & dosagem , Metilases de Modificação do DNA/metabolismo , Exposição por Inalação , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Hipersensibilidade Respiratória/metabolismo , Mucosa Respiratória/metabolismo , Emissões de Veículos , Adulto , Brônquios , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Estudos Cross-Over , Citocinas/metabolismo , Metilases de Modificação do DNA/genética , Método Duplo-Cego , Feminino , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Hipersensibilidade Respiratória/fisiopatologia , Adulto Jovem
10.
Environ Health Prev Med ; 26(1): 68, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193051

RESUMO

BACKGROUND: The physical environment can facilitate or hinder physical activity. A challenge in promoting physical activity is ensuring that the physical environment is supportive and that these supports are appropriately tailored to the individual or group in question. Ideally, aspects of the environment that impact physical activity would be enhanced, but environmental changes take time, and identifying ways to provide more precision to physical activity recommendations might be helpful for specific individuals or groups. Therefore, moving beyond a "one size fits all" to a precision-based approach is critical. MAIN BODY: To this end, we considered 4 critical aspects of the physical environment that influence physical activity (walkability, green space, traffic-related air pollution, and heat) and how these aspects could enhance our ability to precisely guide physical activity. Strategies to increase physical activity could include optimizing design of the built environment or mitigating of some of the environmental impediments to activity through personalized or population-wide interventions. CONCLUSIONS: Although at present non-personalized approaches may be more widespread than those tailored to one person's physical environment, targeting intrinsic personal elements (e.g., medical conditions, sex, age, socioeconomic status) has interesting potential to enhance the likelihood and ability of individuals to participate in physical activity.


Assuntos
Meio Ambiente , Exercício Físico , Medicina de Precisão , Poluição do Ar , Ambiente Construído , Exercício Físico/psicologia , Temperatura Alta , Humanos , Medicina de Precisão/psicologia , Características de Residência
11.
Eur Respir J ; 55(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31806722

RESUMO

Outdoor air pollution exposure increases chronic obstructive pulmonary disease (COPD) hospitalisations, and may contribute to COPD development. The mechanisms of harm, and the extent to which at-risk populations are more susceptible are not fully understood. Neutrophils are recruited to the lung following diesel exhaust exposure, a model of traffic-related air pollution (TRAP), but their functional role in this response is unknown. The purpose of this controlled human-exposure crossover study was to assess the effects of acute diesel exhaust exposure on neutrophil function in never-smokers and at-risk populations, with support from additional in vitro studies.18 participants, including never-smokers (n=7), ex-smokers (n=4) and mild-moderate COPD patients (n=7), were exposed to diesel exhaust and filtered air for 2 h on separate occasions, and neutrophil function in blood (0 h and 24 h post-exposure) and bronchoalveolar lavage (24 h post-exposure) was assessed.Compared to filtered air, diesel exhaust exposure reduced the proportion of circulating band cells at 0 h, which was exaggerated in COPD patients. Diesel exhaust exposure increased the amount of neutrophil extracellular traps (NETs) in the lung across participants. COPD patients had increased peripheral neutrophil activation following diesel exhaust exposure. In vitro, suspended diesel exhaust particles increased the amount of NETs measured in isolated neutrophils. We propose NET formation as a possible mechanism through which TRAP exposure affects airway pathophysiology. In addition, COPD patients may be more prone to an activated inflammatory state following exposure.This is the first controlled human TRAP exposure study directly comparing at-risk phenotypes (COPD and ex-smokers) with lower-risk (never-smokers) participants, elucidating the human susceptibility spectrum.


Assuntos
Poluição do Ar , Neutrófilos , Poluição do Ar/efeitos adversos , Estudos Cross-Over , Humanos , Fumantes , Emissões de Veículos/toxicidade
13.
Am J Respir Crit Care Med ; 200(5): 565-574, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974969

RESUMO

Rationale: Diesel exhaust (DE), an established model of traffic-related air pollution, contributes significantly to the global burden of asthma and may augment the effects of allergen inhalation. Newer diesel particulate-filtering technologies may increase NO2 emissions, raising questions regarding their effectiveness in reducing harm from associated engine output.Objectives: To assess the effects of DE and allergen coexposure on lung function, airway responsiveness, and circulating leukocytes, and determine whether DE particle depletion remediates these effects.Methods: In this randomized, double-blind crossover study, 14 allergen-sensitized participants (9 with airway hyperresponsiveness) underwent inhaled allergen challenge after 2-hour exposures to DE, particle-depleted DE (PDDE), or filtered air. The control condition was inhaled saline after filtered air. Blood sampling and spirometry were performed before and up to 48 hours after exposures. Airway responsiveness was evaluated at 24 hours.Measurements and Main Results: PDDE plus allergen coexposure impaired lung function more than DE plus allergen, particularly in those genetically at risk. DE plus allergen and PDDE plus allergen each increased airway responsiveness in normally responsive participants. DE plus allergen increased blood neutrophils and was associated with persistent eosinophilia at 48 hours. DE and PDDE each increased total peripheral leukocyte counts in a manner affected by participant genotypes. Changes in peripheral leukocytes correlated with lung function decline.Conclusions: Coexposure to DE and allergen impaired lung function, which was worse after particle depletion (which increased NO2). Thus, particulates are not necessarily the sole or main culprit responsible for all harmful effects of DE. Policies and technologies aimed at protecting public health should be scrutinized in that regard.Clinical trial registered with www.clinicaltrials.gov (NCT02017431).


Assuntos
Poluentes Atmosféricos/efeitos adversos , Asma/induzido quimicamente , Asma/genética , Predisposição Genética para Doença , Exposição por Inalação/efeitos adversos , Óxido Nitroso/efeitos adversos , Emissões de Veículos/análise , Adulto , Poluentes Atmosféricos/análise , Colúmbia Britânica , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Allergy Clin Immunol ; 143(6): 1989-2001, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31176381

RESUMO

Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.


Assuntos
Poluentes Atmosféricos/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Poluentes Atmosféricos/análise , Epigênese Genética , Variação Genética , Humanos , Estresse Oxidativo/efeitos dos fármacos , Mucosa Respiratória/imunologia
15.
CMAJ ; 196(5): E164-E169, 2024 Feb 11.
Artigo em Francês | MEDLINE | ID: mdl-38346777
16.
J Allergy Clin Immunol ; 141(3): 833-844, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29519450

RESUMO

Inflammation is a common and essential event in the pathogenesis of diverse diseases. Decades of research has converged on an understanding that all combustion-derived particulate matter (PM) is inflammatory to some extent in the lungs and also systemically, substantially explaining a significant portion of the massive cardiopulmonary disease burden associated with these exposures. In general, this means that efforts to do the following can all be beneficial: reduce particulates at the source, decrease the inflammatory potential of PM output, and, where PM inhalation is unavoidable, administer anti-inflammatory treatment. A range of research, including basic illumination of inflammatory pathways, assessment of disease burden in large cohorts, tailored treatment trials, and epidemiologic, animal, and in vitro studies, is highlighted in this review. However, meaningful translation of this research to decrease the burden of disease and deliver a clear and cohesive message to guide daily clinical practice remains rudimentary. Ongoing efforts to better understand substantial differences in the concentration and type of PM to which the global community is exposed and then distill how that influences inflammation promises to have real-world benefit. This review addresses this complex topic in 3 sections, including ambient PM (typically associated with ground-level transportation), wildfire-induced PM, and PM from indoor biomass burning. Recognizing the overlap between these domains, we also describe differences and suggest future directions to better inform clinical practice and public health.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Material Particulado/administração & dosagem , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia
17.
J Allergy Clin Immunol ; 141(3): 1074-1084.e9, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28532657

RESUMO

BACKGROUND: Diesel exhaust particles (DEPs) are a major component of particulate matter in Europe's largest cities, and epidemiologic evidence links exposure with respiratory symptoms and asthma exacerbations. Respiratory reflexes are responsible for symptoms and are regulated by vagal afferent nerves, which innervate the airway. It is not known how DEP exposure activates airway afferents to elicit symptoms, such as cough and bronchospasm. OBJECTIVE: We sought to identify the mechanisms involved in activation of airway sensory afferents by DEPs. METHODS: In this study we use in vitro and in vivo electrophysiologic techniques, including a unique model that assesses depolarization (a marker of sensory nerve activation) of human vagus. RESULTS: We demonstrate a direct interaction between DEP and airway C-fiber afferents. In anesthetized guinea pigs intratracheal administration of DEPs activated airway C-fibers. The organic extract (DEP-OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin-1 antagonist and the antioxidant N-acetyl cysteine. Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin-1 on nociceptive C-fibers. CONCLUSIONS: This study provides the first mechanistic insights into how exposure to urban air pollution leads to activation of guinea pig and human sensory nerves, which are responsible for respiratory symptoms. Mechanistic information will enable the development of appropriate therapeutic interventions and mitigation strategies for those susceptible subjects who are most at risk.


Assuntos
Poluentes Atmosféricos/toxicidade , Asma , Espasmo Brônquico , Regulação da Expressão Gênica/efeitos dos fármacos , Material Particulado/toxicidade , Reflexo/efeitos dos fármacos , Emissões de Veículos , Idoso , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Espasmo Brônquico/induzido quimicamente , Espasmo Brônquico/metabolismo , Espasmo Brônquico/patologia , Espasmo Brônquico/fisiopatologia , Feminino , Cobaias , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
18.
CMAJ ; 195(47): E1622-E1626, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38049163
20.
J Allergy Clin Immunol ; 139(1): 112-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27321436

RESUMO

BACKGROUND: Allergic disease affects 30% to 40% of the world's population, and its development is determined by the interplay between environmental and inherited factors. Air pollution, primarily consisting of diesel exhaust emissions, has increased at a similar rate to allergic disease. Exposure to diesel exhaust may play a role in the development and progression of allergic disease, in particular allergic respiratory disease. One potential mechanism underlying the connection between air pollution and increased allergic disease incidence is DNA methylation, an epigenetic process with the capacity to integrate gene-environment interactions. OBJECTIVE: We sought to investigate the effect of allergen and diesel exhaust exposure on bronchial epithelial DNA methylation. METHODS: We performed a randomized crossover-controlled exposure study to allergen and diesel exhaust in humans, and measured single-site (CpG) resolution global DNA methylation in bronchial epithelial cells. RESULTS: Exposure to allergen alone, diesel exhaust alone, or allergen and diesel exhaust together (coexposure) led to significant changes in 7 CpG sites at 48 hours. However, when the same lung was exposed to allergen and diesel exhaust but separated by approximately 4 weeks, significant changes in more than 500 sites were observed. Furthermore, sites of differential methylation differed depending on which exposure was experienced first. Functional analysis of differentially methylated CpG sites found genes involved in transcription factor activity, protein metabolism, cell adhesion, and vascular development, among others. CONCLUSIONS: These findings suggest that specific exposures can prime the lung for changes in DNA methylation induced by a subsequent insult.


Assuntos
Poluentes Atmosféricos/toxicidade , Alérgenos/toxicidade , Brônquios/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Emissões de Veículos/toxicidade , Adulto , Antígenos de Dermatophagoides/toxicidade , Asma/genética , Asma/metabolismo , Betula/imunologia , Brônquios/metabolismo , Ilhas de CpG , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Pessoa de Meia-Idade , Phleum/imunologia , Proteínas de Plantas/toxicidade , Mucosa Respiratória/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA