Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nutr Res Rev ; 34(2): 259-275, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33461642

RESUMO

Glucagon-like peptide-1 (GLP-1) is an enterohormone with a key role in several processes controlling body homeostasis, including glucose homeostasis and food intake regulation. It is secreted by the intestinal cells in response to nutrients, such as glucose, fat and amino acids. In the present review, we analyse the effect of protein on GLP-1 secretion and clearance. We review the literature on the GLP-1 secretory effects of protein and protein hydrolysates, and the mechanisms through which they exert these effects. We also review the studies on protein from different sources that has inhibitory effects on dipeptidyl peptidase-4 (DPP4), the enzyme responsible for GLP-1 inactivation, with particular emphasis on specific sources and treatments, and the gaps there still are in knowledge. There is evidence that the protein source and the hydrolytic processing applied to them can influence the effects on GLP-1 signalling. The gastrointestinal digestion of proteins, for example, significantly changes their effectiveness at modulating this enterohormone secretion in both in vivo and in vitro studies. Nevertheless, little information is available regarding human studies and more research is required to understand their potential as regulators of glucose homeostasis.


Assuntos
Proteínas Alimentares/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon , Hidrolisados de Proteína , Homeostase , Humanos , Hidrolisados de Proteína/administração & dosagem
2.
Eur J Nutr ; 56(4): 1629-1636, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27039093

RESUMO

PURPOSE: Several studies have suggested that flavanols may have antiobesity effects; however, those effects clearly depend on the experimental conditions. In a previous study, we found that a single acute dose of grape seed proanthocyanidin extract (GSPE) has satiating effects. We therefore hypothesise that satiating doses of GSPE could be used to reduce body weight gain, and our present objective was to define the most effective dose. METHODS: We assayed two GSPE doses in aged male Wistar rats. First we performed a subchronic (8-day) treatment by intragastric administration, which was repeated after a washout period. We measured body weight, energy intake and faeces composition; we performed indirect calorimetry; and we analysed the mRNA expression of genes involved in lipid metabolism to determine the target tissue for the GSPE. RESULTS: We observed that 0.5 g GSPE/kg BW significantly reduced food intake and thus the amount of energy absorbed. This dosage also increased lipid oxidation in subcutaneous adipose tissue, thus causing a higher total energy expenditure. These combined effects caused a decrease in body weight. Conversely, 1 g GSPE/kg BW, which also reduced energy absorption after the first treatment, had a rebound effect on body weight gain which resulted in a lower response to the proanthocyanidin extract. That is, after the second treatment, the GSPE did not reduce the energy absorbed or modify energy expenditure and body weight. CONCLUSION: GSPE at a dose of 0.5 g/kg can reduce body weight by limiting food intake and activating energy expenditure in subcutaneous adipose tissue.


Assuntos
Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
3.
Mol Nutr Food Res ; 64(16): e2000303, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32613679

RESUMO

SCOPE: A grape-seed proanthocyanidin extract (GSPE) interacts at the intestinal level, enhancing glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) release, which modulate appetite and glucose homeostasis. Thus, enhancing L-cell numbers could be a strategy to promote hormone production, providing a potential strategy for obesity and type-2 diabetes mellitus (T2DM) treatment. METHODS AND RESULTS: Mice ileum organoids are used to evaluate the long-term effects of GSPE and two of its main components, epicatechin (EC) and gallic acid (GA), on intestinal differentiation. Hormone levels are determined using RIA and ELISA kits, and gene expression of transcription factors involved in intestinal cell differentiation, as well as markers of different cell types, are assessed by real-time qPCR. GSPE upregulates enterohormone gene expression and content, as well as the pan-endocrine marker chromogranin A. GSPE also modulates the temporal gene expression profile of early and late transcription factors involved in L-cell differentiation. Furthermore, GSPE upregulates goblet cell (Muc2) and enterocyte (sucraseisomaltase) markers, while downregulating stem cell markers (Lgr5+). Although EC and GA modified enterohormone release, they do not reproduce GSPE effects on transcription factor's profile. CONCLUSIONS: This study shows the potential role of GSPE in promoting enteroendocrine differentiation, effect that is not mediated by EC or GA.


Assuntos
Hormônios Gastrointestinais/metabolismo , Extrato de Sementes de Uva/farmacologia , Íleo/citologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Proantocianidinas/farmacologia , Animais , Catequina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Ácido Gálico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Extrato de Sementes de Uva/química , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Organoides , Peptídeo YY/metabolismo , Proantocianidinas/química , Receptores Acoplados a Proteínas G/metabolismo
4.
Cell Stem Cell ; 26(6): 845-861.e12, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32396863

RESUMO

Colorectal cancers (CRCs) are composed of an amalgam of cells with distinct genotypes and phenotypes. Here, we reveal a previously unappreciated heterogeneity in the biosynthetic capacities of CRC cells. We discover that the majority of ribosomal DNA transcription and protein synthesis in CRCs occurs in a limited subset of tumor cells that localize in defined niches. The rest of the tumor cells undergo an irreversible loss of their biosynthetic capacities as a consequence of differentiation. Cancer cells within the biosynthetic domains are characterized by elevated levels of the RNA polymerase I subunit A (POLR1A). Genetic ablation of POLR1A-high cell population imposes an irreversible growth arrest on CRCs. We show that elevated biosynthesis defines stemness in both LGR5+ and LGR5- tumor cells. Therefore, a common architecture in CRCs is a simple cell hierarchy based on the differential capacity to transcribe ribosomal DNA and synthesize proteins.


Assuntos
Neoplasias Colorretais , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , DNA Ribossômico , Humanos , Receptores Acoplados a Proteínas G
5.
Food Funct ; 10(7): 4062-4070, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31225553

RESUMO

Herein, the potential of hydrolysates of chicken feet proteins as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors was investigated; moreover, three hydrolysates were selected due to their high DPP-IV inhibitory capacity (>80% inhibition), showing the IC50 values of around 300 µg estimated protein per mL; one of them (named p4H) was selected for the posterior analysis. In addition, its effect on glucose tolerance was investigated in two rat models (diet and age-induced) of glucose-intolerance and healthy animals; the amount of 300 mg estimated peptide per kg body weight improved the plasma glucose profile in both glucose-intolerance models. Moreover, it stimulated active GLP-1 release in the enteroendocrine STC-1 cells and rat ileum tissue. In conclusion, our results indicate that chicken feet proteins are a good source of bioactive peptides as DPP-IV inhibitors. Moreover, our results highlight the potential of the selected hydrolysate p4H in the management of type 2 diabetes due to its dual function of inhibition of the DPP-IV activity and induction of the GLP-1 release.


Assuntos
Galinhas/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Hidrolisados de Proteína/metabolismo , Animais , Glicemia , Peso Corporal , Linhagem Celular , Diabetes Mellitus Tipo 2 , Dieta , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Feminino , Intolerância à Glucose , Concentração Inibidora 50 , Masculino , Ratos , Ratos Wistar
6.
Genes (Basel) ; 10(8)2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398921

RESUMO

A dose of proanthocyanidins with satiating properties proved to be able to limit body weight increase several weeks after administration under exposure to a cafeteria diet. Here we describe some of the molecular targets and the duration of the effects. We treated rats with 500 mg grape seed proanthocyanidin extract (GSPE)/kg BW for ten days. Seven or seventeen weeks after the last GSPE dose, while animals were on a cafeteria diet, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to measure the mRNA of the key energy metabolism enzymes from the liver, adipose depots and muscle. We found that a reduction in the expression of adipose Lpl might explain the lower amount of adipose tissue in rats seven weeks after the last GSPE dose. The liver showed increased expression of Cpt1a and Hmgs2 together with a reduction in Fasn and Dgat2. In addition, muscle showed a higher fatty oxidation (Oxct1 and Cpt1b mRNA). However, after seventeen weeks, there was a completely different gene expression pattern. At the conclusion of the study, seven weeks after the last GSPE administration there was a limitation in adipose accrual that might be mediated by an inhibition of the gene expression of the adipose tissue Lpl. Concomitantly there was an increase in fatty acid oxidation in liver and muscle.


Assuntos
Adiposidade/efeitos dos fármacos , Depressores do Apetite/farmacologia , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Ocidental/efeitos adversos , Sobrepeso/prevenção & controle , Proantocianidinas/farmacologia , Tecido Adiposo/metabolismo , Animais , Depressores do Apetite/uso terapêutico , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Leptina/genética , Leptina/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Sobrepeso/tratamento farmacológico , Proantocianidinas/uso terapêutico , Ratos , Vitis/química
7.
Future Med Chem ; 11(12): 1387-1401, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298576

RESUMO

Aim: Fragment-based drug design or bioisosteric replacement is used to find new actives with low (or no) similarity to existing ones but requires the synthesis of nonexisting compounds to prove their predicted bioactivity. Protein-ligand docking or pharmacophore screening are alternatives but they can become computationally expensive when applied to very large databases such as ZINC. Therefore, fast strategies are necessary to find new leads in such databases. Materials & methods: We designed a computational strategy to find lead molecules with very low (or no) similarity to existing actives and applied it to DPP-IV. Results: The bioactivity assays confirm that this strategy finds new leads for DPP-IV inhibitors. Conclusion: This computational strategy reduces the time of finding new lead molecules.


Assuntos
Química Computacional/métodos , Bases de Dados de Compostos Químicos , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV , Desenho de Fármacos , Animais , Sítios de Ligação , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Rim/enzimologia , Ligantes , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Suínos
8.
Food Funct ; 9(3): 1672-1682, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29473070

RESUMO

Grape seed proanthocyanidin extract (GSPE) modulates several parameters involved in metabolic syndrome. GSPE is a mixture of compounds, some which are rapidly absorbed, while others remain in the lumen where they might have effects that are translated to the whole organism. Our aim was to decipher if the 8-day treatment of GSPE, previously shown to reduce food intake, induces changes in the microbiota and enterohormone secretion. The ratio of Firmicutes : Bacteroidetes was lower in the microbiota of GSPE-treated rats compared to controls, and differences in several taxonomic families and genera were observed. Such modulation led to a reduction in cecal butyrate content. GSPE also increased plasma glucagon-like-peptide-1 (GLP-1). Gallic acid did not induce major changes in the microbiota profile nor in GLP-1 secretion. Correlations between several microbiota taxa and plasma triacylglycerol, adiposity, and enterohormones were observed. Modulation of microbiota may be one of the mechanism by which GSPE impacts metabolic health.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Extrato de Sementes de Uva/administração & dosagem , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/microbiologia , Proantocianidinas/administração & dosagem , Adiposidade/efeitos dos fármacos , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Butiratos/metabolismo , Feminino , Ácido Gálico/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Ratos , Ratos Wistar
9.
Nutrients ; 10(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518911

RESUMO

Obesity is highly associated with the pathologies included in the concept of the Metabolic Syndrome. Grape-seed proanthocyanins (GSPE) have showed very positive effects against all these metabolic disruptions; however, there is, as yet, no consensus about their effectiveness against an obesogenic challenge, such as a cafeteria diet. We determined the effectiveness of a dose of 500 mg GSPE/kg b.w. (body weight) against the obesogenic effects of a 17-week cafeteria diet, administered as a sub-chronic treatment, 10-15 days before, intermittently and at the end of the diet, in Wistar rats. Body weight, adiposity, indirect calorimetry and plasma parameters were analyzed. GSPE pre-treatment showed a long-lasting effect on body weight and adiposity that was maintained for seven weeks after the last dose. A corrective treatment was administered for the last two weeks of the cafeteria diet intervention; however, it did not effectively correct any of the parameters assessed. The most effective treatment was an intermittent GSPE dosage, administered every second week during the cafeteria diet. This limited body weight gain, adiposity and most lipotoxic effects. Our results support the administration of this GSPE dose, keeping an intermittent interval between dosages longer than every second week, to improve obesogenic disruptions produced by a cafeteria diet.


Assuntos
Dieta , Extrato de Sementes de Uva/farmacologia , Obesidade/tratamento farmacológico , Proantocianidinas/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Glicemia/metabolismo , Composição Corporal , Peso Corporal , Calorimetria Indireta , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ácidos Graxos não Esterificados/sangue , Feminino , Insulina/sangue , Resistência à Insulina , Obesidade/prevenção & controle , Ratos , Ratos Wistar , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
10.
Food Nutr Res ; 61(1): 1321347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659730

RESUMO

Background: Enteroendocrine cells respond to food components by secreting an array of hormones that regulate several functions. We have previously shown that grape seed proanthocyanidins (GSPE) modulate GLP-1 levels. Objective: To deepen on the knowledge of the mechanisms used by GSPE to increase GLP-1, and extend it to its role at modulation of other enterohormones. Design: We used an ex vivo system to test direct modulation of enterohormones; STC-1 cells to test pure phenolic compounds; and rats to test the effects at different gastrointestinal segments. Results: GSPE compounds act at several locations along the gastrointestinal tract modulating enterohormone secretion depending on the feeding condition. GSPE directly promotes GLP-1 secretion in the ileum, while unabsorbed/metabolized forms do so in the colon. Such stimulation requires the presence of glucose. GSPE enhanced GIP and reduced CCK secretion; gallic acid could be partly responsible for this effect. Conclusions: The activity of GSPE modulating enterohormone secretion may help to explain its effects on metabolism. GSPE acts through several mechanisms; its compounds and their metabolites are GLP-1 secretagogues in ileum and colon, respectively. In vivo GLP-1 secretion might also be mediated by indirect pathways involving modulation of other enterohormones that in turn regulate GLP-1 release.

11.
Mol Nutr Food Res ; 60(12): 2554-2564, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27417519

RESUMO

SCOPE: Grape-seed phenolic compounds have recently been described as satiating agents in rats when administered as a whole phenolic extract (GSPE). This satiating effect may involve the release of satiating gut hormones such as GLP-1, although a short-term increase in the orexigenic hormone ghrelin was also reported. In this study, we investigated the short- and long-term effects of GSPE in rats, focusing on the role of the main grape-seed phenolics in ghrelin secretion. METHODS AND RESULTS: GSPE produced a short-term increase in plasma ghrelin in rats after an acute treatment. A mouse ghrelinoma cell line was used to test the effects of the main pure grape-seed phenolic compounds on ghrelin release. Monomeric flavanols stimulated ghrelin secretion by activating bitter taste receptors. In contrast, gallic acid (GA) and oligomeric flavanols inhibited ghrelin release. The ghrelin-inhibiting effects of GA were confirmed in rats and in rat duodenal segments. One day after the last dose of a subchronic treatment, GSPE decreased plasma ghrelin in rats, ghrelin secretion in intestinal segments, and ghrelin mRNA expression in stomach. CONCLUSION: The sustained satiating effects of GSPE are related to a long-term decrease in ghrelin expression. GA and oligomeric flavanols play a ghrelin-inhibiting role in this process.


Assuntos
Grelina/sangue , Extrato de Sementes de Uva/farmacologia , Intestinos/efeitos dos fármacos , Polifenóis/farmacologia , Estômago/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Ácido Gálico , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Grelina/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Neoplasias Gástricas/tratamento farmacológico , Vitis/química
12.
Nutrients ; 8(10)2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27775601

RESUMO

Food intake depends on homeostatic and non-homeostatic factors. In order to use grape seed proanthocyanidins (GSPE) as food intake limiting agents, it is important to define the key characteristics of their bioactivity within this complex function. We treated rats with acute and chronic treatments of GSPE at different doses to identify the importance of eating patterns and GSPE dose and the mechanistic aspects of GSPE. GSPE-induced food intake inhibition must be reproduced under non-stressful conditions and with a stable and synchronized feeding pattern. A minimum dose of around 350 mg GSPE/kg body weight (BW) is needed. GSPE components act by activating the Glucagon-like peptide-1 (GLP-1) receptor because their effect is blocked by Exendin 9-39. GSPE in turn acts on the hypothalamic center of food intake control probably because of increased GLP-1 production in the intestine. To conclude, GSPE inhibits food intake through GLP-1 signaling, but it needs to be dosed under optimal conditions to exert this effect.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Extrato de Sementes de Uva/administração & dosagem , Proantocianidinas/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Feminino , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Mucosa Intestinal/metabolismo , Proantocianidinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
13.
Food Funct ; 7(1): 483-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514231

RESUMO

Grape-seed proanthocyanidins' role as stimulators of active GLP-1 in rats suggests that they could be effective as satiating agents. Wistar rats were used to study the effects of proanthocyanidins on food intake with different doses, administration times and proanthocyanidin extract compositions. A dose of 423 mg of phenolics per kg body weight (BW) of grape-seed proanthocyanidin extract (GSPE) was necessary to decrease the 12-hour cumulative food intake by 18.7 ± 3.4%. Proanthocyanidins were effective when delivered directly into the gastrointestinal tract one hour before, or simultaneously at the start of the feeding period. Proanthocyanidins without galloyl forms, such as those from cocoa extract, were not as effective as grape-seed derived forms. GSPE increased the portal levels of active GLP-1 and total ghrelin and decreased the CCK levels, simultaneously with a decrease in gastric emptying. In conclusion, grape-seed proanthocyanidins could be useful as a satiating agent under the conditions defined in this study.


Assuntos
Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , Resposta de Saciedade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Estudos Cross-Over , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Extrato de Sementes de Uva/química , Masculino , Proantocianidinas/química , Distribuição Aleatória , Ratos , Ratos Wistar
14.
Curr Med Chem ; 22(1): 39-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25245512

RESUMO

This review focuses on the role of procyanidins, the main group of flavonoids, on type 2 diabetes mellitus (T2DM) and insulin resistance. We compile the role of procyanidins on several animal models, and we evaluate their effects on target tissues and analyze the mechanisms involved. Procyanidin treatments in fructose or high-fat induced insulin resistant models were found to improve the damage induced by the diet, thus improving glycemia and insulin sensitivity. The same positive effects were also reported in models of late stage T2DM, in which pancreatic ß-cells can no longer counteract hyperglycemia. More controversial results were found in genetically obese or cafeteria diet-induced insulin resistant models. Human studies, although limited, further support the hypoglycemic effect of procyanidins. Regarding their mechanisms, procyanidins have been found to target several tissues involved in glucose homeostasis, which is also discussed in the present review. In insulin-sensitive tissues, procyanidins modulate glucose uptake and lipogenesis and improve their oxidative/inflammatory state, the disruption of which is important in T2DM development. In the insulin-producing tissue, the pancreas, procyanidins modulate insulin secretion and production and ß-cell mass, although the available results are divergent. Finally, the gut is another potential target for procyanidins. The available data suggest that modulation of the active glucagon-like peptide-1 (GLP-1) levels could partially explain the reported antihyperglycemic effect of these natural compounds.


Assuntos
Biflavonoides/uso terapêutico , Catequina/uso terapêutico , Diabetes Mellitus Tipo 2/prevenção & controle , Hipoglicemiantes/uso terapêutico , Proantocianidinas/uso terapêutico , Animais , Biflavonoides/farmacologia , Catequina/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proantocianidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA