Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675592

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Assuntos
Sobrevivência Celular , Dopamina , Extrato de Sementes de Uva , Nanopartículas , Doença de Parkinson , Rotenona , alfa-Sinucleína , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/química , Dopamina/metabolismo , Nanopartículas/química , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/farmacologia , Rotenona/farmacologia , Linhagem Celular Tumoral , alfa-Sinucleína/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Tamanho da Partícula , Lipossomos/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
2.
Cell Mol Life Sci ; 79(5): 257, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462606

RESUMO

The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients' treatment by epigenetic targeting.


Assuntos
Fibrose Cística , Curcumina/farmacologia , Curcumina/uso terapêutico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo/genética , Epigênese Genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia
3.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067437

RESUMO

(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-ß-cyclodextrin (Me-ß-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-ß-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-ß-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-ß-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.


Assuntos
Extrato de Sementes de Uva , Nanopartículas , Humanos , Extrato de Sementes de Uva/farmacologia , Dopamina , Pós , Nanopartículas/química , Crioprotetores , Liofilização/métodos , Sacarose/química , Tamanho da Partícula
4.
Pulm Pharmacol Ther ; 72: 102098, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34793977

RESUMO

The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Aminofenóis/efeitos adversos , Canais de Cloreto/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Humanos , Mutação , Estudos Prospectivos
5.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056658

RESUMO

The supply of nutrients, such as antioxidant agents, to fish cells still represents a challenge in aquaculture. In this context, we investigated solid lipid nanoparticles (SLN) composed of a combination of Gelucire® 50/13 and Precirol® ATO5 to administer a grape seed extract (GSE) mixture containing several antioxidant compounds. The combination of the two lipids for the SLN formation resulted in colloids exhibiting mean particle sizes in the range 139-283 nm and zeta potential values in the range +25.6-43.4 mV. Raman spectra and X-ray diffraction evidenced structural differences between the free GSE and GSE-loaded SLN, leading to the conclusion that GSE alters the structure of the lipid nanocarriers. From a biological viewpoint, cell lines from gilthead seabream and European sea bass were exposed to different concentrations of GSE-SLN for 24 h. In general, at appropriate concentrations, GSE-SLN increased the viability of the fish cells. Furthermore, regarding the gene expression in those cells, the expression of antioxidant genes was upregulated, whereas the expression of hsp70 and other genes related to the cytoskeleton was downregulated. Hence, an SLN formulation containing Gelucire® 50/13/Precirol® ATO5 and GSE may represent a compelling platform for improving the viability and antioxidant properties of fish cells.


Assuntos
Antioxidantes/administração & dosagem , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Extrato de Sementes de Uva/administração & dosagem , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Polifenóis/administração & dosagem , Vitis/química , Animais , Antioxidantes/farmacologia , Aquicultura , Proteínas de Peixes/genética , Peixes , Extrato de Sementes de Uva/farmacologia , Lipossomos/química , Nanopartículas/química , Estresse Oxidativo , Polifenóis/farmacologia
6.
Int J Mol Sci ; 22(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916525

RESUMO

The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, ß and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.


Assuntos
Metilação de DNA , Canais Epiteliais de Sódio/biossíntese , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Humanos
7.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572331

RESUMO

Background: The loss of nigrostriatal neurons containing dopamine (DA) together with the "mitochondrial dysfunction" in midbrain represent the two main causes related to the symptoms of Parkinson's disease (PD). Hence, the aim of this investigation is to co-administer the missing DA and the antioxidant grape seed-derived proanthocyanidins (grape seed extract, GSE) in order to increase the levels of the neurotransmitter (which is unable to cross the Blood Brain Barrier) and reducing the oxidative stress (OS) related to PD, respectively. Methods: For this purpose, we chose Solid Lipid Nanoparticles (SLN), because they have been already proven to increase DA uptake in the brain. DA-SLN adsorbing GSE (GSE/DA-SLN) were formulated and subjected to physico-chemical characterization, and their cytocompatibility and protection against OS were examined. Results: GSE was found on SLN surface and release studies evidenced the efficiency of GSE in preventing DA autoxidation. Furthermore, SLN showed high mucoadhesive strength and were found not cytotoxic to both primary Olfactory Ensheathing and neuroblastoma SH-SY5Y cells by MTT test. Co-administration of GSE/DA-SLN and the OS-inducing neurotoxin 6-hydroxydopamine (100 µM) resulted in an increase of SH-SY5Y cell viability. Conclusions: Hence, SLN formulations containing DA and GSE may constitute interesting candidates for non-invasive nose-to-brain delivery.


Assuntos
Antioxidantes/farmacologia , Citoproteção , Dopamina/farmacologia , Extrato de Sementes de Uva/farmacologia , Nanopartículas/administração & dosagem , Neuroblastoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/farmacologia , Sobrevivência Celular , Dopaminérgicos/farmacologia , Quimioterapia Combinada , Humanos , Nanopartículas/química , Células Tumorais Cultivadas , Vitis/química
8.
Exp Physiol ; 104(6): 866-875, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924990

RESUMO

NEW FINDINGS: What is the central question of this study? What is the precise subcellular localization of the epithelial sodium channel (ENaC) in human airway epithelium? What is the main finding and its importance? ENaC protein has an unexpected localization in the peripheral region of the apical membrane of bronchial epithelial cells, very close to tight junctions. This may be important for the mechanism of Na+ absorption ABSTRACT: The epithelial sodium channel (ENaC) has a key role in absorbing fluid across the human airway epithelium. Altered activity of ENaC may perturb the process of mucociliary clearance, thus impairing the innate defence mechanisms against microbial agents. The proteins forming ENaC are present on the apical membrane of the epithelium. However, their precise localization is unknown. In the present study, we used two antibodies recognizing the α and ß ENaC subunits. Both antibodies revealed a restricted localization of ENaC in the peripheral region of the apical membrane of cultured bronchial epithelial cells, close to but not overlapping with tight junctions. In contrast, the cystic fibrosis transmembrane conductance regulator chloride channel was more diffusely expressed on the whole apical membrane. Modulation of ENaC activity by aprotinin or elastase resulted in a decrease or increase in the peripheral localization, respectively. Our results suggest that sodium absorption is mainly occurring close to tight junctions where this cation may be rapidly expelled by the Na+ /K+ pump present in lateral membranes. This arrangement of channels and pumps may limit Na+ build-up in other regions of the cells.


Assuntos
Brônquios/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Mucosa Respiratória/metabolismo , Animais , Brônquios/citologia , Linhagem Celular , Membrana Celular/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Humanos , Ratos
9.
J Cell Sci ; 129(6): 1128-40, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26823603

RESUMO

The most common mutation of the cystic fibrosis transmembrane regulator (CFTR) gene, F508del, produces a misfolded protein resulting in its defective trafficking to the cell surface and an impaired chloride secretion. Pharmacological treatments partially rescue F508del CFTR activity either directly by interacting with the mutant protein and/or indirectly by altering the cellular protein homeostasis. Here, we show that the phosphorylation of ezrin together with its binding to phosphatidylinositol-4,5-bisphosphate (PIP2) tethers the F508del CFTR to the actin cytoskeleton, stabilizing it on the apical membrane and rescuing the sub-membrane compartmentalization of cAMP and activated PKA. Both the small molecules trimethylangelicin (TMA) and VX-809, which act as 'correctors' for F508del CFTR by rescuing F508del-CFTR-dependent chloride secretion, also restore the apical expression of phosphorylated ezrin and actin organization and increase cAMP and activated PKA submembrane compartmentalization in both primary and secondary cystic fibrosis airway cells. Latrunculin B treatment or expression of the inactive ezrin mutant T567A reverse the TMA and VX-809-induced effects highlighting the role of corrector-dependent ezrin activation and actin re-organization in creating the conditions to generate a sub-cortical cAMP pool of adequate amplitude to activate the F508del-CFTR-dependent chloride secretion.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Animais , Cloretos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Fibrose Cística/enzimologia , Fibrose Cística/genética , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Humanos , Fosforilação , Ratos , Deleção de Sequência , Transdução de Sinais
10.
Inflamm Res ; 67(2): 107-109, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29085959

RESUMO

The aim of this study was to understand whether insulin-like growth factor-binding protein-6 (IGFBP-6) has functional effects on neutrophils, in particular when they cross epithelium during inflammation. We found that IGFBP-6 increased ROS production (cytofluorimetry), degranulation of primary and tertiary granules (ELISA) and transmigration through the epithelial monolayer. No priming by IGFBP-6 on neutrophils stimulated by either PMA or fMLP was observed. IGFBP-6 is an agonist of neutrophils' functions, most likely when these cells have been already activated by other stimuli.


Assuntos
Degranulação Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Neutrófilos/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Metaloproteinase 9 da Matriz/metabolismo , Peroxidase/análise , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Int J Mol Sci ; 19(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673202

RESUMO

Improving the efficacy of gene therapy vectors is still an important goal toward the development of safe and efficient gene therapy treatments. S/MAR (scaffold/matrix attached region)-based vectors are maintained extra-chromosomally in numerous cell types, which is similar to viral-based vectors. Additionally, when established as an episome, they show a very high mitotic stability. In the present study we tested the idea that addition of an S/MAR element to a CFTR (cystic fibrosis transmembrane conductance regulator) expression vector, may allow the establishment of a CFTR episome in bronchial epithelial cells. Starting from the observation that the S/MAR vector pEPI-EGFP (enhanced green fluorescence protein) is maintained as an episome in human bronchial epithelial cells, we assembled the CFTR vector pBQ-S/MAR. This vector, transfected in bronchial epithelial cells with mutated CFTR, supported long term wt CFTR expression and activity, which in turn positively impacted on the assembly of tight junctions in polarized epithelial cells. Additionally, the recovery of intact pBQ-S/MAR, but not the parental vector lacking the S/MAR element, from transfected cells after extensive proliferation, strongly suggested that pBQ-S/MAR was established as an episome. These results add a new element, the S/MAR, that can be considered to improve the persistence and safety of gene therapy vectors for cystic fibrosis pulmonary disease.


Assuntos
Brônquios/citologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Vetores Genéticos/genética , Plasmídeos/genética , Mucosa Respiratória/citologia , Brônquios/metabolismo , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/terapia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Terapia Genética/métodos , Humanos , Mucosa Respiratória/metabolismo , Transfecção/métodos
12.
Exp Cell Res ; 348(1): 46-55, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590528

RESUMO

The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption.


Assuntos
Brônquios/patologia , Fibrose Cística/patologia , Células Epiteliais/patologia , Microscopia de Força Atômica/métodos , Citoesqueleto de Actina/metabolismo , Líquidos Corporais/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Forma Celular , Módulo de Elasticidade , Células Epiteliais/metabolismo , Humanos
13.
Pulm Pharmacol Ther ; 34: 8-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26192479

RESUMO

Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials. Finally, we discuss the development of such polymer- and lipid-based NPs in the context of in vitro and in vivo disease models, such as lung cancer, as well as in clinical trials.


Assuntos
Fibrose Cística/terapia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Muco/metabolismo , Nanopartículas/química , Fibrose Cística/metabolismo , Expectorantes/metabolismo , Humanos , Inflamação , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Plasmídeos/administração & dosagem , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , Tecnologia Farmacêutica
14.
J Cell Mol Med ; 18(8): 1631-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24894806

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co-cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o- line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F-actin content was increased in co-cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co-cultures had a tendency of increased expression of occludin and ZO-1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC-CFBE co-cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC-CFBE co-cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co-culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype.


Assuntos
Âmnio/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mucosa Respiratória/metabolismo , Actinas/metabolismo , Âmnio/citologia , Western Blotting , Diferenciação Celular , Células Cultivadas , Cloretos/metabolismo , Técnicas de Cocultura , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/patologia , Canais Epiteliais de Sódio/genética , Imunofluorescência , Humanos , Células-Tronco Mesenquimais/citologia , Mucosa Respiratória/patologia , Junções Íntimas/fisiologia , Engenharia Tecidual
15.
ScientificWorldJournal ; 2014: 859817, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563632

RESUMO

Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Pneumopatias/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Medicina Regenerativa/métodos , Transtornos Respiratórios/terapia , Doença Crônica , Humanos , Pneumopatias/fisiopatologia , Medicina Regenerativa/tendências , Transtornos Respiratórios/fisiopatologia
16.
Int J Pharm ; 659: 124255, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38782151

RESUMO

With the aim to find an alternative vehicle to the most used thermosensitive hydrogels for efficient nanotechnology-based nose-to-brain delivery approach for Parkinson's disease (PD) treatment, in this work we evaluated the Dopamine (DA) and the antioxidant grape seed-derived pro-anthocyanidins (Grape Seed Extract, GSE) co-loaded solid lipid nanoparticles (SLNs) put in slight viscous dispersions (SVDs). These SVDs were prepared by dispersion in water at low concentrations of mucoadhesive polymers to which SLN pellets were added. For the purpose, we investigated two polymeric blends, namely Poloxamer/Carbopol (PF-127/Carb) and oxidized alginate/Hydroxypropylmethyl cellulose (AlgOX/HPMC). Rheological studies showed that the two fluids possess Newtonian behaviour with a viscosity slightly higher that water. The pH values of the SVDs were mainly within the normal range of nasal fluid as well as almost no osmotic effect was associated to both SVDs. All the SVDs were capable to provide DA permeation through nasal porcine mucosa. Moreover, it was found that PF-127/Carb blend possesses penetration enhancer capability better than the Alg OX/HPMC combination. Flow cytometry studies demonstrated the uptake of viscous liquids incorporating fluorescent SLNs by human nasal RPMI 2650 cell in time-dependent manner. In conclusion, the SVD formulations may be considered promising alternatives to thermosensitive hydrogels strategy. Moreover, in a broader perspective, such SVD formulations may be also hopeful for treating various neurological diseases beyond PD treatment.


Assuntos
Administração Intranasal , Dopamina , Extrato de Sementes de Uva , Nanopartículas , Mucosa Nasal , Nanopartículas/química , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/administração & dosagem , Animais , Viscosidade , Suínos , Dopamina/administração & dosagem , Dopamina/química , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Humanos , Poloxâmero/química , Portadores de Fármacos/química , Reologia , Polímeros/química , Lipídeos/química , Lipossomos
17.
Cells Tissues Organs ; 197(6): 445-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23652321

RESUMO

Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Doença Pulmonar Obstrutiva Crônica/cirurgia , Células-Tronco/citologia , Humanos
18.
Respiration ; 85(3): 252-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23018206

RESUMO

BACKGROUND: The effect of acute lung injury on adhesion molecule expression in hematopoietic stem/progenitor cells (HSPCs) is poorly understood. OBJECTIVES: The aim of this study was to determine whether there is a relationship -between pulmonary inflammation, expression of VLA-4 (CD49d), LFA-1 (CD11a), L-selectin (CD62L), CXCR4, and chemotaxis in resident HSPCs, as well as the level of circulating HSPCs. METHODS: Following intratracheal administration of a single LPS bolus in C57Bl/6 mice, the number of inflammatory cells, differential counts, and amounts of cytokines/ chemokines were studied in cytospins and bronchoalveolar lavage fluid (BALF) specimens. Expressions of adhesion -molecules and CXCR4 were analyzed in HSPCs by flow cytometry, as well as SDF-1-directed chemotaxis. Levels of HSPCs in the blood were studied in ungated and circulating subpopulations. RESULTS: In coincidence with a peak of airway neutrophils, cytokine (IL-1ß, TNF-α, and IL-6), chemokine (KC, MIP-2, and SDF-1) levels in BALF and the number of marrow HSPCs expressing CD49d and CXCR4 significantly increased at 48 h. The number of CD49d- and CXCR4-positive HSPCs dropped at 72 h. The HSPC subset comprising bigger cells behaved the same for CD49d. Chemotaxis of the marrow HSPC subset of bigger cells was higher in LPS-treated animals than in controls at 72 h. Finally, we could detect a significant decrease in circulating Sca-1(+) cells in the mononuclear population at 72 h in LPS-treated mice. CONCLUSIONS: Our data provide evidence for a temporal relationship between pulmonary inflammation, CD49d and CXCR4 expression fluctuation in resident HSPCs, and the level of circulating HSPCs.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Quimiotaxia , Células-Tronco Hematopoéticas/metabolismo , Integrina alfa4beta1/metabolismo , Receptores CXCR4/metabolismo , Animais , Antígenos Ly/metabolismo , Quimiocina CXCL12/sangue , Lipopolissacarídeos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
19.
Pharmaceutics ; 15(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986742

RESUMO

We have already formulated solid lipid nanoparticles (SLNs) in which the combination of the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) was supposed to be favorable for Parkinson's disease (PD) treatment. In fact, GSE supply would reduce the PD-related oxidative stress in a synergic effect with DA. Herein, two different methods of DA/GSE loading were studied, namely, coadministration in the aqueous phase of DA and GSE, and the other approach consisting of a physical adsorption of GSE onto preformed DA containing SLNs. Mean diameter of DA coencapsulating GSE SLNs was 187 ± 4 nm vs. 287 ± 15 nm of GSE adsorbing DA-SLNs. TEM microphotographs evidenced low-contrast spheroidal particles, irrespective of the SLN type. Moreover, Franz diffusion cell experiments confirmed the permeation of DA from both SLNs through the porcine nasal mucosa. Furthermore, fluorescent SLNs also underwent cell-uptake studies by using flow cytometry in olfactory ensheathing cells and neuronal SH-SY5Y cells, evidencing higher uptake when GSE was coencapsulated rather than adsorbed onto the particles.

20.
Lab Invest ; 92(11): 1527-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22964850

RESUMO

Tight junctions (TJs) restrict the transit of ions and molecules through the paracellular route and act as a barrier to regulate access of inflammatory cells into the airway lumen. The pathophysiology of cystic fibrosis (CF) lung disease is characterised by abnormal ion and fluid transport across the epithelium and polymorphonuclear (PMN) leukocyte-dominated inflammatory response. Na⁺/H⁺ exchanger regulatory factor 1 (NHERF1) is a protein involved in PKA-dependent activation of CFTR by interacting with CFTR via its PDZ domains and with ezrin via its C-terminal domain. We have previously found that the NHERF1-overexpression dependent rescue CFTR-dependent chloride secretion is due to the re-organisation of the actin cytoskeleton network induced by the formation of the multiprotein complex NHERF1-RhoA-ezrin-actin. In this context, we here studied whether NHERF1 and CFTR are involved in the organisation and function of TJs. F508del CFBE41o⁻ monolayers presented nuclear localisation of zonula occludens (ZO-1) and occludin as well as disorganisation of claudin 1 and junction-associated adhesion molecule 1 as compared with wild-type 16HBE14o⁻ monolayers, paralleled by increased permeability to dextrans and PMN transmigration. Overexpression of either NHERF1 or CFTR in CFBE41o⁻ cells rescued TJ proteins to their proper intercellular location and decreased permeability and PMN transmigration, while this effect was not achieved by overexpressing either NHERF1 deprived of ezrin-binding domain. Further, expression of a phospho-dead ezrin mutant, T567A, increased permeability in both 16HBE14o⁻ cells and in a CFBE clone stably overexpressing NHERF1 (CFBE/sNHERF1), whereas a constitutively active form of ezrin, T567D, achieved the opposite effect in CFBE41o⁻ cells. A dominant-negative form of RhoA (RhoA-N19) also disrupted ZO-1 localisation at the intercellular contacts dislodging it to the nucleus and increased permeability in CFBE/sNHERF1. The inhibitor Y27632 of Rho kinase (ROCK) increased permeability as well. Overall, these data suggest a significant role for the multiprotein complex CFTR-NHERF1-ezrin-actin in maintaining TJ organisation and barrier function, and suggest that the RhoA/ROCK pathway is involved.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fosfoproteínas/metabolismo , Mucosa Respiratória/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Junções Íntimas/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Mucosa Respiratória/citologia , Proteínas de Junções Íntimas/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA