Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inhal Toxicol ; 35(1-2): 48-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36648028

RESUMO

Aim: Polycrystalline wools (PCW) are included with Refractory ceramic fibers (RCF) in the alumino-silicates family of High Temperature Insulation Wools (HTIW). IARC includes PCW in the ceramic fibers group and considers them as possible human carcinogens (GROUP 2B). Since PCW toxicity is not yet clear, our aim was to evaluate their toxic and inflammatory effects and to compare them with the known RCF effects.Method: We exposed human bronchial (BEAS-2B) and alveolar (A549) cells to 2-100 µg/mL (2.4 × 103-1.2 × 105 fibers/mL; 2.51 × 103-1.26 × 105 fibers/cm2 of PCW and 7.4 × 103-3.7 × 105 fibers/mL; 7.75 × 103-3.87 × 105 fibers/cm2 of RCF) of the tested fibers to evaluate potential viability reduction, apoptosis, membrane damage, direct/oxidative DNA-damage, cytokine release.Results: In A549, PCW did not induce cytotoxicity and apoptosis but they induced significant dose-dependent DNA-damage, although lower than RCF; only RCF induced oxidative effects. PCW also induced an increase in IL-6 release at 100 µg/mL (1.2 × 105 fibers/mL; 1.26 × 105 fibers/cm2). In BEAS-2B, PCW did not induce cell-viability reduction RCF induced a dose-dependent cell-viability decrease. Both fibers show a dose-dependent increase of apoptosis. In BEAS-2B, PCW also induced dose-dependent DNA-damage, although lower than RCF, and slight oxidative effects similar to RCF. PCW also induced an increase of IL-6 release; RCF induced a decrease of IL-8. Summarizing, PCW induce direct-oxidative DNA-damage although to a lower extent than RCF observed by both mass-based and fiber number-based analysis.Conclusion: For the first time, the study shows the potential toxicity of PCW, usually considered safe, and suggests to perform further in vitro studies, also on other cell types, to confirm these findings.


Assuntos
Cerâmica , Dano ao DNA , Pulmão , Humanos , Brônquios , Citocinas/metabolismo , Interleucina-6/metabolismo , Cerâmica/toxicidade , Células A549
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674503

RESUMO

In tumors, the multi drug resistance phenomenon may occur through the efflux of chemotherapeutic drugs out of cancer cells, impeding their accumulation, and eventually reducing their toxicity. This process is mediated by transporters overexpressed in the plasma membranes of tumor cells, among which is the P-glycoprotein/multidrug resistance 1/ATP-binding cassette B1 (P-gp/MDR1/ABCB1). The aim of this study was to explore the effect of a new molecule, called AIF-1, on ABCB1 activity. In a cellular model of non-small cell lung cancer (NSCLC), AIF-1 significantly inhibited ABCB1 activity, which was evaluated by the fluorimetric measurement of the intracellular accumulation of calcein. AIF-1 also significantly increased the intracellular content of doxorubicin, which was evaluated by confocal microscopy and LC-MS/MS analysis. This effect translated to higher cytotoxicity of doxorubicin and reduced cellular proliferation. Finally, in a murine xenograft model, the tumor volume increased by 267% and 148% on average in mice treated with vehicle and doxorubicin alone, respectively. After the co-administration of doxorubicin with AIF-1, tumor volume increased by only 13.4%. In conclusion, these results suggest enhancement of the efficacy of the chemotherapeutic drug doxorubicin by AIF-1, laying the basis for the future development of new ABCB1 inhibitors for tumor treatment.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cromatografia Líquida , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Espectrometria de Massas em Tandem , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/metabolismo
3.
J Appl Toxicol ; 40(5): 592-599, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944349

RESUMO

Nanozeolites (NZs) are increasingly used in several sectors, including catalysts, ion exchange materials or thermal isolators, taking advantage of the major property of NZs to absorb residual water and moisture to preserve the insulation of devices and products, but very few data are available on their toxicity. We investigated the potential cyto-genotoxicity and pro-inflammatory effects of manufactured Linde Type A (LTA)-NZs on human alveolar cells (A549) exposed to 10, 25, 50 and 100 µg/mL. LTA NZs were characterized by dynamic light scattering (DLS). Cell viability, mortality and apoptosis were evaluated by cytofluorimetric assay after 24h exposure. Membrane damage was evaluated by lactate dehydrogenase release and direct and oxidative DNA damage induction by formamide-pyrimidine glycosylase-Comet assay after 4 and 24 h. The induction of pro-inflammatory effects was evaluated in terms of interleukin 6 (IL-6) and IL-8 cytokine release after 24 h by ELISA. We found a slight increase in apoptotic cell percentage at 50 and 100 µg/mL and dead cell percentage at 100 µg/mL after 24 h; slight, but statistically significant, direct DNA damage starting from 25 µg/mL and slight oxidative DNA damage both at 4 and at 24 h; increased release of IL-6 only at the lowest concentration after 24 h. The results show lack of cytotoxicity, early moderate genotoxicity and slight inflammatory effects at the lowest used concentration. These findings represent the first data on potential genotoxic, oxidative and inflammatory effects of LTA NZs and highlight the need to perform further studies to confirm such results.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Dano ao DNA , Mediadores da Inflamação/metabolismo , Nanopartículas/toxicidade , Zeolitas/toxicidade , Células A549 , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Ensaio Cometa , Humanos , Medição de Risco
4.
J Appl Toxicol ; 40(11): 1511-1525, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32608137

RESUMO

The European Union (EU) continuously takes ensuring the safe use of manufactured nanomaterials (MNMs) in consumer products into consideration. The application of a common approach for testing MNMs, including the use of optimized protocols and methods' selection, becomes increasingly important to obtain reliable and comparable results supporting the regulatory framework. In the present study, we tested four representative MNMs, two titanium dioxides (NM100 and NM101) and two silicon dioxides (NM200 and NM203), using the EU FP7-NANoREG approach, starting from suspension and dispersion preparations, through to their characterization and final evaluation of biological effects. MNM dispersions were prepared following a refined NANOGENOTOX protocol and characterized by dynamic light scattering (DLS) in water/bovine serum albumin and in media used for in vitro testing. Potential genotoxic effects were evaluated on human bronchial BEAS-2B cells using micronucleus and Comet assays, and pro-inflammatory effects by cytokines release. Murine macrophages RAW 264.7 were used to detect potential innate immune responses using two functional endpoints (pro-inflammatory cytokines and nitric oxide [NO] production). The interaction of MNMs with RAW 264.7 cells was studied by electron microscopy. No chromosomal damage and slight DNA damage and an oxidative effect, depending on MNMs, were observed in bronchial cells. In murine macrophages, the four MNMs directly induced tumor necrosis factor α or interleukin 6 secretion, although at very low levels; lipopolysaccharide-induced NO production was significantly decreased by the titania and one silica MNM. The application of this approach for the evaluation of MNM biological effects could be useful for both regulators and industries.


Assuntos
Política de Saúde/legislação & jurisprudência , Imunidade Inata/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanotecnologia/legislação & jurisprudência , Dióxido de Silício/toxicidade , Titânio/toxicidade , Testes de Toxicidade , Animais , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Europa (Continente) , União Europeia , Regulamentação Governamental , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Formulação de Políticas , Células RAW 264.7 , Medição de Risco
5.
J Appl Toxicol ; 36(3): 394-403, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26370214

RESUMO

Toxic effects were reported for pristine-multi-wall carbon nanotubes (p-MWCNTs) while the role of the functionalization on MWCNT-induced toxicity is not yet well defined. We evaluated on human alveolar (A549) epithelial cells and normal bronchial (BEAS-2B) cells exposed to p-MWCNTs, MWCNTs-OH and MWCNTs-COOH: uptake by TEM, cell viability by different assays, membrane damage by the LDH assay and cytokine release by ELISA. The aims of the present study were to: (i) confirm MWCNT cytotoxicity mechanisms hypothesized in our previous studies; (ii) identify the most reliable viability assay to screen MWCNT toxicity; and (iii) to test our model to clarify the role of functionalization on MWCNT-induced toxicity. In A549 cells, p-MWCNTs and MWCNTs-OH were localized free in the cytoplasm and inside vacuoles whereas MWCNTs-COOH were confined inside filled cytoplasmic vesicles. WST-1 and Trypan blue assays showed in A549 cells a similar slight viability reduction for all MWCNTs whereas in BEAS-2B cells WST1 showed a high viability reduction at the highest concentrations, particularly for MWCNTs-COOH. The MTT assay showed a false cytotoxicity as a result of MWCNTs-interference. Pristine and MWCNTs-COOH induced membrane damage, particularly in BEAS-2B cells. MWCNTs-COOH induced interleukin-6 (IL-6) and IL-8 release in A549 cells whereas p-MWCNTs induced IL-8 release in BEAS-2B cells. MWCNTs intracellular localization in A549 cells confirms the toxicity mechanisms previously hypothesized, with p-MWCNTs disrupting the membrane and vesicle-confined MWCNTs-COOH inducing inflammation. WST-1 was more reliable than MTT to test MWCNT-toxicity. BEAS-2B cells were more susceptible then A549 cells, particularly to MWCNT-COOH cytotoxicity. Our results confirm the toxicity of p-MWCNTs and demonstrate, also for the two kinds of tested functionalized MWCNTs toxic effects with a different mechanism of action.


Assuntos
Ácidos Carboxílicos/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Bioensaio , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endocitose , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Hidroxilação , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Pulmão/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/química , Pneumonia/metabolismo , Pneumonia/patologia , Reprodutibilidade dos Testes , Medição de Risco , Fator de Necrose Tumoral alfa/metabolismo
6.
J Appl Toxicol ; 35(10): 1102-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25772588

RESUMO

The increasing use of cobalt oxide (Co3 O4 ) nanoparticles (NPs) in several applications and the suggested genotoxic potential of Co-oxide highlight the importance of evaluating Co3 O4 NPs toxicity. Cyto-genotoxic and inflammatory effects induced by Co3 O4 NPs were investigated in human alveolar (A549), and bronchial (BEAS-2B) cells exposed to 1-40 µg ml(-1) . The physicochemical properties of tested NPs were analysed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cytotoxicity was studied to analyze cell viability (WST1 test) and membrane damage (LDH assay), direct/oxidative DNA damage was assessed by the Formamido-pyrimidine glycosylase (Fpg)-modified comet assay and inflammation by interleukin (IL)-6, IL-8 and tumor necrosis factor-alpha (TNF-α) release (ELISA). In A549 cells, no cytotoxicity was found, whereas BEAS-2B cells showed a viability reduction at 40 µg ml(-1) and early membrane damage at 1, 5 and 40 µg ml-1. In A549 cells, direct and oxidative DNA damage at 20 and 40 µg ml(-1) were detected without any effects on cytokine release. In BEAS-2B cells, significant direct DNA damage at 40 µg ml(-1) and significant oxidative DNA damage with a peak at 5 µg ml(-1) , that was associated with increased TNF-α release at 1 µg ml(-1) after 2 h and increased IL-8 release at 20 µg ml(-1) after 24 h, were detected. The findings show in the transformed alveolar cells no cytotoxicity and genotoxic/oxidative effects at 20 and 40 µg ml(-1) . In normal bronchial cells, moderate cytotoxicity, direct DNA damage only at the highest concentration and significant oxidative-inflammatory effects at lower concentrations were detected. The findings confirm the genotoxic-oxidative potential of Co3 O4 NPs and show greater sensitivity of BEAS-2B cells to cytotoxic and oxidative-inflammatory effects suggesting the use of different cell lines and multiple end-points to elucidate Co3 O4 NPs toxicity.


Assuntos
Cobalto/toxicidade , Inflamação/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Óxidos/toxicidade , Sistema Respiratório/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Brônquios/citologia , Brônquios/patologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Citocinas/metabolismo , Dano ao DNA , Humanos , Inflamação/patologia , Interleucina-6/biossíntese , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Óxidos/química , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/patologia , Fator de Necrose Tumoral alfa/biossíntese
7.
J Appl Toxicol ; 34(11): 1209-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25224607

RESUMO

The toxicity of titanium dioxide nanoparticles (TiO2 -NPs), used in several applications, seems to be influenced by their specific physicochemical characteristics. Cyto-genotoxic and inflammatory effects induced by a mixture of 79% anatase/21% rutile TiO2 -NPs were investigated in human alveolar (A549) and bronchial (BEAS-2B) cells exposed to 1-40 µg ml(-1) 30 min, 2 and 24 h to assess potential pulmonary toxicity. The specific physicochemical properties such as crystallinity, NP size and shape, agglomerate size, surface charge and specific surface area (SSA) were analysed. Cytotoxic effects were studied by evaluating cell viability using the WST1 assay and membrane damage using LDH analysis. Direct/oxidative DNA damage was assessed by the Fpg-comet assay and the inflammatory potential was evaluated as interleukin (IL)-6, IL-8 and tumour necrosis factor (TNF)-α release by enzyme-linked immunosorbant assay (ELISA). In A549 cells no significant viability reduction and moderate membrane damage, only at the highest concentration, were detected, whereas BEAS-2B cells showed a significant viability reduction and early membrane damage starting from 10 µg ml(-1) . Direct/oxidative DNA damage at 40 µg ml(-1) and increased IL-6 release at 5 µg ml(-1) were found only in A549 cells after 2 h. The secretion of pro-inflammatory cytokine IL-6, involved in the early acute inflammatory response, and oxidative DNA damage indicate the promotion of early and transient oxidative-inflammatory effects of tested TiO2 -NPs on human alveolar cells. The findings show a higher susceptibility of normal bronchial cells to cytotoxic effects and higher responsiveness of transformed alveolar cells to genotoxic, oxidative and early inflammatory effects induced by tested TiO2 -NPs. This different cell behaviour after TiO2 -NPs exposure suggests the use of both cell lines and multiple end-points to elucidate NP toxicity on the respiratory system.


Assuntos
Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Células Epiteliais Alveolares/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Ensaio Cometa , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Environ Toxicol Pharmacol ; 109: 104477, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810713

RESUMO

Biochar is currently garnering interest as an alternative to commercial fertilizer and as a tool to counteract global warming. However, its use is increasingly drawing attention, particularly concerning the fine dust that can be developed during its manufacture, transport, and use. This work aimed to assess the toxicity of fine particulate Biochar (

9.
Mutat Res ; 750(1-2): 1-11, 2013 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-23010388

RESUMO

Cigarette smoke is a complex mixture of chemicals, some of which are known as carcinogens. The cyto-genotoxic effects of cigarette-smoke extract (CSE) from commercial cigarettes without (A and B) and with filter (C and D) were evaluated at different CSE concentrations on A549 and BEAS-2B cells. The particle content of the cigarette smoke and the metal composition of the CSE were also analyzed. The cells were exposed to 1-10% of the CSE from one cigarette per experiment. Cytotoxicity was evaluated by use of the MTT assay after 24h, and the lactate dehydrogenase (LDH) assay after 30min and 24h. The Fpg-modified comet assay was used to evaluate direct-oxidative DNA damage on cells exposed for 30min. As expected, unfiltered cigarette smoke (particularly from the B cigarette) contained a higher number of particles than filtered smoke. With smoke extract from the B cigarette we found a decrease in cell viability only in BEAS-2B cells. The results of the LDH test showed membrane damage for B-cigarette smoke extract, particularly in BEAS-2B cells. Extracts from unfiltered cigarette smoke induced significant direct DNA damage, to a larger extent in A549 cells. Filtered cigarette-smoke extract induced a significant direct DNA damage at 5-10%. A significant induction of oxidative DNA damage was found at the highest CSE concentration in both cell types (by smoke extracts from B and C cigarettes in A549 cells, and from A and D cigarettes in BEAS-2B cells). Smoke extracts from filter cigarettes induced less direct DNA damage than those from unfiltered cigarettes in A549 cells, probably due to a protective effect of filter. In BEAS-2B cells the smoke extract from the B-cigarette showed the highest genotoxic effect, with a concentration-dependent trend. These findings show a higher cyto-genotoxicity for smoke extracts from the B-cigarette and oxidative effects for those from the A and D cigarettes, particularly in BEAS-2B cells. Moreover, there was a higher responsiveness of A549 cells to genotoxic insult of CSE, and a cigarette-dependent genotoxicity in BEAS-2B cells. Our experimental model demonstrated to be suitable to sensitively detect early genotoxic response of different lung-cell types to non-cytotoxic concentrations of complex inhalable mixtures.


Assuntos
Brônquios/efeitos dos fármacos , Dano ao DNA , Pulmão/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Linhagem Celular , Ensaio Cometa , Filtração , Humanos , Testes de Mutagenicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-36901176

RESUMO

Although a higher lung cancer risk has been already associated with arsenic exposure, the contribution of arsenic and its compounds to the carcinogenic effects of other agents, such as tobacco smoke, is not well characterized. This systematic review examined the relationship between occupational and non-occupational arsenic exposure and tobacco smoking on lung cancer risk using papers published from 2010 to 2022. Two databases, PUBMED and Scifinder, were used for the searches. Among the sixteen human studies included, four were about occupational exposure, and the others were about arsenic in drinking water. Furthermore, only three case-control studies and two cohort studies evaluated an additive or multiplicative interaction. The interaction between arsenic exposure and tobacco smoke seems to be negligible at low arsenic concentrations (<100 µg/L), while there is a synergistic effect at higher concentrations. Finally, it is not yet possible to assess whether a linear no-threshold (LNT) model for lung cancer risk can be applied to the co-exposure to arsenic and tobacco smoke. Although the methodological quality of the included studies is good, these findings suggest that rigorous and accurate prospective studies on this topic are highly needed.


Assuntos
Arsênio , Neoplasias Pulmonares , Exposição Ocupacional , Poluição por Fumaça de Tabaco , Humanos , Fumar , Estudos Prospectivos , Pulmão
11.
Artigo em Inglês | MEDLINE | ID: mdl-36767288

RESUMO

MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on human health is established and interest in them is progressively increasing. Environmental and occupational risk factors affecting human health include chemical agents. Benzene represents a pollutant of concern due to its ubiquity and because it may alter gene expression by epigenetic mechanisms, including miRNA expression changes. This review summarizes recent findings on miRNAs associated with benzene exposure considering in vivo, in vitro and human findings in order to better understand the molecular mechanisms through which benzene induces toxic effects and to evaluate whether selected miRNAs may be used as biomarkers associated with benzene exposure. Original research has been included and the study selection, data extraction and assessments agreed with PRISMA criteria. Both in vitro studies and human results showed a variation in miRNAs' expression after exposure to benzene. In vivo surveys also exhibited this trend, but they cannot be regarded as conclusive because of their small number. However, this review confirms the potential role of miRNAs as "early warning" signals in the biological response induced by exposure to benzene. The importance of identifying miRNAs' expression, which, once validated, might work as sentinel molecules to better understand the extent of the exposure to xenobiotics, is clear. The identification of miRNAs as a molecular signature associated with specific exposure would be advantageous for disease prevention and health promotion in the workplace.


Assuntos
Poluentes Ambientais , MicroRNAs , Humanos , Benzeno/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Epigênese Genética , Biomarcadores
12.
Biomed Res Int ; 2023: 7066090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521120

RESUMO

This study is aimed at evaluating whether the occupational exposure to TiO2 during the industrial production process is able to induce genotoxic, oxidative, and inflammatory effects on blood, biomonitoring the same workers that showed micronucleus induction in the exfoliated buccal cells, as previous published. The final aim was to find sensitive and suitable biomarkers to evaluate potential early toxicity of occupational exposure to TiO2. On the same 40 workers involved in the manufacture of TiO2 pigment, 5 office workers, and 18 controls previously studied, we used formamidopyrimidine glycosylase- (Fpg-) comet assay on lymphocytes to evaluate genotoxic/oxidative effects and detected cytokine (IL-6, IL-8, and TNFα) release by ELISA to evaluate proinflammation. Moreover, we studied the possible influence of single nucleotide polymorphisms of XRCC1 and hOGG1 DNA repair genes and of GST metabolism-related genes (GSTT1 and GSTM1) on the evaluated effects. We did not find statistically significant differences in the mean values of the analysed Fpg-comet assay parameters; only the percentage of DNA damaged cells appearing in the test as comets (% comets) resulted higher in the exposed workers compared to controls. Also, the data analysed taking into account the specific task (bagging, industrial cleaning, mobile operations, maintaining, and production) showed differences only for % comets which resulted higher in industrial cleaners compared to controls. We found variations of IL-6 and IL-8 levels in the exposed workers with concentrations that were lower for IL-6 and higher for IL-8 compared to the control group. XRCC1, hOGG1, and GSTT1 polymorphisms did not influence neither comet parameters nor cytokine release. These findings demonstrate that TiO2 production process is able to induce slight proinflammatory effects in terms of IL-8 increased release but not significant genotoxic/oxidative effects on lymphocytes, which do not seem to be a target of TiO2, prevalently inhalable particles, generated in the studied production site.


Assuntos
Interleucina-6 , Exposição Ocupacional , Humanos , Interleucina-6/genética , Interleucina-8/genética , Mucosa Bucal , Testes para Micronúcleos , Dano ao DNA/genética , Titânio/toxicidade , Ensaio Cometa , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estresse Oxidativo/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
13.
J Appl Toxicol ; 32(6): 454-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22271384

RESUMO

The increasing use of nanomaterials in consumer products highlights the importance of understanding their potential toxic effects. We evaluated cytotoxic and genotoxic/oxidative effects induced by commercial multi-walled carbon nanotubes (MWCNTs) on human lung epithelial (A549) cells treated with 5, 10, 40 and 100 µg ml⁻¹ for different exposure times. Scanning electron microscopy (SEM) analysis, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays were performed to evaluate cytotoxicity. Fpg-modified comet assay was used to evaluate direct-oxidative DNA damage. LDH leakage was detected after 2, 4 and 24 h of exposure and viability reduction was revealed after 24 h. SEM analysis, performed after 4 and 24 h exposure, showed cell surface changes such as lower microvilli density, microvilli structure modifications and the presence of holes in plasma membrane. We found an induction of direct DNA damage after each exposure time and at all concentrations, statistically significant at 10 and 40 µg ml⁻¹ after 2 h, at 5, 10, 100 µg ml⁻¹ after 4 h and at 10 µg ml⁻¹ after 24 h exposure. However, oxidative DNA damage was not found. The results showed an induction of early cytotoxic effects such as loss of membrane integrity, surface morphological changes and MWCNT agglomerate entrance at all concentrations. We also demonstrated the ability of MWCNTs to induce early genotoxicity. This study emphasizes the suitability of our approach to evaluating simultaneously the early response of the cell membrane and DNA to different MWCNT concentrations and exposure times in cells of target organ. The findings contribute to elucidation of the mechanism by which MWCNTs cause toxic effects in an in vitro experimental model.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Dano ao DNA , Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Células Epiteliais Alveolares/enzimologia , Células Epiteliais Alveolares/patologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microvilosidades/efeitos dos fármacos , Microvilosidades/ultraestrutura , Mutagênicos/classificação , Nanotubos de Carbono/classificação , Nanotubos de Carbono/ultraestrutura , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35206525

RESUMO

Sex-related biological differences might lead to different effects in women and men when they are exposed to risk factors. A scoping review was carried out to understand if sex could be a discriminant in health outcomes due to benzene. Studies on both animals and humans were collected. In vivo surveys, focusing on genotoxicity, hematotoxicity and effects on metabolism suggested a higher involvement of male animals (mice or rats) in adverse health effects. Conversely, the studies on humans, focused on the alteration of blood parameters, myeloid leukemia incidence and biomarker rates, highlighted that, overall, women had significantly higher risk for blood system effects and a metabolization of benzene 23-26% higher than men, considering a similar exposure situation. This opposite trend highlights that the extrapolation of in vivo findings to human risk assessment should be taken with caution. However, it is clear that sex is a physiological parameter to consider in benzene exposure and its health effects. The topic of sex difference linked to benzene in human exposure needs further research, with more numerous samples, to obtain a higher strength of data and more indicative findings. Sex factor, and gender, could have significant impacts on occupational exposures and their health effects, even if there are still uncertainties and gaps that need to be filled.


Assuntos
Benzeno , Exposição Ocupacional/estatística & dados numéricos , Fatores Sexuais , Benzeno/análise , Feminino , Humanos , Incidência , Masculino , Exposição Ocupacional/análise , Medição de Risco , Caracteres Sexuais
15.
Expert Rev Respir Med ; 16(7): 787-800, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35912519

RESUMO

INTRODUCTION: The risk of lung cancer from radon exposure was small compared to tobacco smoking (BEIR VI), but the relationship between these two carcinogenic agents has yet to be quantitatively estimated. The objective of this systematic review was to evaluate the last evidences on the role of radon occupational exposures and tobacco smoke on lung cancer risk. AREAS COVERED: Thirteen articles were selected using two different databases, PubMed and Scifinder, and were limited to those published from 2010 to 2021. The reference list of selected studies was reviewed to identify other relevant papers. EXPERT OPINION: Seven papers included in this systematic review did not deal with the multiplicative or the additive type of interaction between radon exposure and smoking habit. Six papers discussed the nature of this interaction with a prevalence of the sub-multiplicative model compared to the additive one. Altogether, smoking adjustment did not significantly change lung cancer risk. The included studies might constitute a starting point for updating the models for risk assessment in occupational and residential scenarios, promoting concomitantly the exposure reduction to radon and other cofactors, as recently introduced by Italian Legislative Decree number 101 of 31 July 2020, an application of Euratom Directive 59/2013.


This paper offers an updated overview on lung cancer risk due to occupational exposure to radon together with tobacco smoking habits. It evidences the quantitative role of smoking on radon exposure and discusses their interaction. The results show that smoking adjustments do not significantly modify lung cancer risk at both high and low radon concentrations.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Radônio , Poluição por Fumaça de Tabaco , Humanos , Medição de Risco , Nicotiana
16.
Toxicology ; 466: 153085, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34968639

RESUMO

Formaldehyde mainly emitted from wood adhesives, finishing materials, paint for furniture represents, together with wood dust, a potential carcinogenic risk for wood workers. Aims of this multidisciplinary study are to investigate the possibility of replacing urea-formaldehyde (UF) adhesives in the wood industry with organic and/or inorganic-based glues to obtain a final less toxic product and to evaluate the potential toxicity of wood glued with such new adhesives. For this purpose we selected poplar wood to test an organic new adhesive HBP (Hemp Based Protein), a mixture of hemp flour and cross-linker PAE (polyaminoamide epichlorohydrin), and spruce wood to test an inorganic adhesive geopolymer K-PSS (potassium-polysiloxosialate) plus polyvinyl acetate. For the poplar wood, we also used a commercial panel glued with UF for comparison. We reproduced occupational inhalation exposure during sawing activities of mentioned woods, collected and characterized the wood dusts emitted during sawing and evaluated in vitro their potential cyto-genotoxic and inflammatory effects. We used human lung cells (A549) exposed for 24 h to 20 and 100 µg/mL of collected PM2.5 wood dust. We found that both the new adhesives wood dusts induced a slightly higher apoptotic effect than untreated natural wood dusts particularly in spruce wood. Only geopolymer K-PSS wood dust induced membrane damage at the highest concentration and direct and oxidative DNA damage that could be explained by the different chemical composition and the lower particle sizes in respect to organic HBP adhesive wood dust. We found slight induction of IL-6 release, not influenced by K-PSS treatment, at the highest concentration in spruce wood. For poplar wood, IL-6 and IL-8 induction was found particularly for untreated and UF-treated wood at the highest concentration, where hemp adhesive treatment induced lower inflammation while at lower concentration similar slight cytokine induction was found for all tested wood dusts. This preliminary study shows that natural adhesives used to replace UF adhesives represent an interesting alternative, particularly the organic hemp-based adhesive showing very low toxicity.


Assuntos
Adesivos/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Membrana Celular/efeitos dos fármacos , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Poeira/análise , Madeira , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação , Exposição por Inalação , Pesquisa Interdisciplinar , Modelos Teóricos , Exposição Ocupacional , Tamanho da Partícula , Testes de Toxicidade/métodos
17.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497412

RESUMO

BACKGROUND: The loss of the CDKN2A/ARF (cyclin-dependent kinase inhibitor 2A/alternative reading frame) gene is the most common alteration in malignant pleural mesothelioma (MPM), with an incidence of about 70%, thus representing a novel target for mesothelioma treatment. In the present study, we evaluated the antitumor potential of combining the standard chemotherapy regimen used for unresectable MPM with the CDK4/6 (cyclin-dependent kinase 4 or 6) inhibitor abemaciclib. METHODS: Cell viability, cell death, senescence, and autophagy induction were evaluated in two MPM cell lines and in a primary MPM cell culture. RESULTS: The simultaneous treatment of abemaciclib with cisplatin and pemetrexed showed a greater antiproliferative effect than chemotherapy alone, both in MPM cell lines and in primary cells. This combined treatment induced cellular senescence or autophagic cell death, depending on the cell type. More in detail, the induction of cellular senescence was related to the increased expression of p21, whereas autophagy induction was due to the impairment of the AKT/mTOR signaling. Notably, the effect of the combination was irreversible and no resumption in tumor cell proliferation was observed after drug withdrawal. CONCLUSION: Our results demonstrated the therapeutic potential of CDK4/6 inhibitors in combination with chemotherapy for the treatment of MPM and are consistent with the recent positive results in the MiST2 arm in abemaciclib-treated patients.

18.
Nanotoxicology ; 16(6-8): 776-790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36427224

RESUMO

During nanomaterial (NM) production, workers could be exposed, particularly by inhalation, to NMs and other chemicals used in the synthesis process, so it is important to have suitable biomarkers to monitor potential toxic effects. Aim of this study was to evaluate the effectiveness of the introduction of exposure mitigation measures on workers unintentionally exposed to graphene co-pollutants during production process monitoring the presumable reduction of workplace NM contamination and of early genotoxic and oxidative effects previously found on these workers. We used Buccal Micronucleus Cytome (BMCyt) assay and Fpg-comet test, resulted the most sensitive biomarkers on our first biomonitoring work, to measure the genotoxic effects. We also detected urinary oxidized nucleic acid bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo to evaluate oxidative damage. The genotoxic and oxidative effects were assessed on the same graphene workers (N = 6) previously studied, comparing the results with those found in the first biomonitoring and with the control group (N = 11). This was achieved 6 months after the installation of a special filter hood (where to perform the phases at higher risk of NM emission) and the improvement of environmental and personal protective equipment. Particle number concentration decreased after the mitigation measures. We observed reduction of Micronucleus (MN) frequency and oxidative DNA damage and increase of 8-oxodGuo excretion compared to the first biomonitoring. These results, although limited by the small subject number, showed the efficacy of adopted exposure mitigation measures and the suitability of used sensitive and noninvasive biomarkers to bio-monitor over time workers involved in graphene production process.


Assuntos
Grafite , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Seguimentos , Grafite/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Testes para Micronúcleos/métodos , Biomarcadores , Dano ao DNA , Estresse Oxidativo , Ensaio Cometa
19.
Mutat Res ; 728(3): 88-97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21763453

RESUMO

The human buccal micronucleus cytome assay (BMCyt) is one of the most widely used techniques to measure genetic damage in human population studies. Reducing protocol variability, assessing the role of confounders, and estimating a range of reference values are research priorities that will be addressed by the HUMN(XL) collaborative study. The HUMN(XL) project evaluates the impact of host factors, occupation, life-style, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells. In addition, the study will provide a range of reference values for all cytome endpoints. A database of 5424 subjects with buccal MN values obtained from 30 laboratories worldwide was compiled and analyzed to investigate the influence of several conditions affecting MN frequency. Random effects models were mostly used to investigate MN predictors. The estimated spontaneous MN frequency was 0.74‰ (95% CI 0.52-1.05). Only staining among technical features influenced MN frequency, with an abnormal increase for non-DNA-specific stains. No effect of gender was evident, while the trend for age was highly significant (p<0.001). Most occupational exposures and a diagnosis of cancer significantly increased MN and other endpoints frequencies. MN frequency increased in heavy smoking (≥40cig/day, FR=1.37; 95% CI 1.03-.82) and decreased with daily fruit consumption (FR=0.68; 95% CI 0.50-0.91). The results of the HUMN(XL) project identified priorities for validation studies, increased the basic knowledge of the assay, and contributed to the creation of a laboratory network which in perspective may allow the evaluation of disease risk associated with MN frequency.


Assuntos
Testes para Micronúcleos/métodos , Mucosa Bucal/citologia , Fatores Etários , Bochecha , Nível de Saúde , Humanos , Estilo de Vida , Exposição Ocupacional , Padrões de Referência , Fatores Sexuais
20.
Artigo em Inglês | MEDLINE | ID: mdl-34639764

RESUMO

Although Radon (Rn) is a known agent for lung cancer, the link between Rn exposure and other non-pulmonary neoplasms remains unclear. The aim of this review is to investigate the role of Rn in the development of tumors other than lung cancer in both occupational and environmental exposure. Particularly, our attention has been focused on leukemia and tumors related to brain and central nervous system (CNS), skin, stomach, kidney, and breast. The epidemiologic literature has been systematically reviewed focusing on workers, general population, and pediatric population. A weak increase in leukemia risk due to Rn exposure was found, but bias and confounding factors cannot be ruled out. The results of studies conducted on stomach cancer are mixed, although with some prevalence for a positive association with Rn exposure. In the case of brain and CNS cancer and skin cancer, results are inconclusive, while no association was found for breast and kidney cancers. Overall, the available evidence does not support a conclusion that a causal association has been established between Rn exposure and the risk of other non-pulmonary neoplasms mainly due to the limited number and heterogeneity of existing studies. To confirm this result, a statistical analysis should be necessary, even if it is now not applicable for the few studies available.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Radônio , Criança , Exposição Ambiental/efeitos adversos , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Exposição Ocupacional/efeitos adversos , Radônio/análise , Radônio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA