Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurocrit Care ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138716

RESUMO

BACKGROUND: Brain activation to motor commands is seen in 15% of clinically unresponsive patients with acute brain injury. This state called cognitive motor dissociation (CMD) is detectable by electroencephalogram (EEG) or functional magnetic resonance imaging, predicts long-term recovery, and is recommended by recent guidelines to support prognostication. However, false negative CMD results are a particular concern, and occult aphasia in clinically unresponsive patients may be a major factor. This study aimed to quantify the impact of aphasia on CMD testing. METHODS: We prospectively studied 61 intensive care unit patients admitted with acute primary intracerebral hemorrhage (ICH) who had behavioral evidence of command following or were able to mimic motor commands. All patients underwent an EEG-based motor command paradigm used to detect CMD and comprehensive aphasia assessments. Logistic regression was used to identify predictors of brain activation, including aphasia types and associations with recovery of independence (Glasgow Outcome Scale-Extended score ≥ 4). RESULTS: Of 61 patients, 50 completed aphasia and the EEG-based motor command paradigm. A total of 72% (n = 36) were diagnosed with aphasia. Patients with impaired comprehension (i.e., receptive or global aphasia) were less likely to show brain activation than those with intact comprehension (odds ratio [OR] 0.23 [95% confidence interval 0.05-0.89], p = 0.04). Brain activation was independently associated with Glasgow Outcome Scale-Extended ≥ 4 by 12 months (OR 2.4 [95% confidence interval 1.2-5.0], p = 0.01) accounting for the Functional Outcome in Patients with Primary ICH score (OR1.3 [95% confidence interval 1.0-1.8], p = 0.01). CONCLUSIONS: Brain activation to motor commands is four times less likely for patients with primary ICH with impaired comprehension. False negative results due to occult receptive aphasia need to be considered when interpreting CMD testing. Early detection of brain activation may help predict long-term recovery in conscious patients with ICH.

2.
Neurocrit Care ; 37(3): 670-677, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750930

RESUMO

BACKGROUND: Prolonged external ventricular drainage (EVD) in patients with subarachnoid hemorrhage (SAH) leads to morbidity, whereas early removal can have untoward effects related to recurrent hydrocephalus. A metric to help determine the optimal time for EVD removal or ventriculoperitoneal shunt (VPS) placement would be beneficial in preventing the prolonged, unnecessary use of EVD. This study aimed to identify whether dynamics of cerebrospinal fluid (CSF) biometrics can temporally predict VPS dependency after SAH. METHODS: This was a retrospective analysis of a prospective, single-center, observational study of patients with aneurysmal SAH who required EVD placement for hydrocephalus. Patients were divided into VPS-dependent (VPS+) and non-VPS dependent groups. We measured the bicaudate index (BCI) on all available computed tomography scans and calculated the change over time (ΔBCI). We analyzed the relationship of ΔBCI with CSF output by using Pearson's correlation. A k-nearest neighbor model of the relationship between ΔBCI and CSF output was computed to classify VPS. RESULTS: Fifty-eight patients met inclusion criteria. CSF output was significantly higher in the VPS+ group in the 7 days post EVD placement. There was a negative correlation between delta BCI and CSF output in the VPS+ group (negative delta BCI means ventricles become smaller) and a positive correlation in the VPS- group starting from days four to six after EVD placement (p < 0.05). A weighted k-nearest neighbor model for classification had a sensitivity of 0.75, a specificity of 0.70, and an area under the receiver operating characteristic curve of 0.80. CONCLUSIONS: The correlation of ΔBCI and CSF output is a reliable intraindividual biometric for VPS dependency after SAH as early as days four to six after EVD placement. Our machine learning model leverages this relationship between ΔBCI and cumulative CSF output to predict VPS dependency. Early knowledge of VPS dependency could be studied to reduce EVD duration in many centers (intensive care unit length of stay).


Assuntos
Hidrocefalia , Hemorragia Subaracnóidea , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Derivação Ventriculoperitoneal , Hidrocefalia/cirurgia , Vazamento de Líquido Cefalorraquidiano , Hemorragia Subaracnóidea/cirurgia , Drenagem/métodos , Derivações do Líquido Cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA