Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 14(9): 3504-3512, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35171188

RESUMO

Isolation of circulating tumor cells (CTCs) from patients is a challenge due to the rarity of CTCs. Recently, various platforms to capture and release CTCs for downstream analysis have been developed. However, most of the reported release methods provide external stimuli to release all captured cells, which lead to lack of specificity in the pool of collected cells, and the external stimuli may affect the activity of the released cells. Here, we presented a simple method for single-cell recovery to overcome the shortcomings, which combined the nanostructures with a photocurable hydrogel, chondroitin sulfate methacryloyl (CSMA). In brief, we synthesized gelatin nanoparticles (Gnps) and modified them on flat glass (Gnp substrate) for the specific capture of CTCs. A 405 nm laser was projected onto the selected cells, and then CSMA was cured to encapsulate the selected CTCs. Unselected cells were removed with MMP-9 enzyme solution, and selected CTCs were recovered using a microcapillary. Finally, the photocurable hydrogel-encapsulated cells were analyzed by nucleic acid detection. In addition, the results suggested that the isolation platform showed good biocompatibility and successfully achieved the isolation of selected cells. In summary, our light-induced hydrogel responsive platform holds certain potential for clinical applications.


Assuntos
Nanoestruturas , Células Neoplásicas Circulantes , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/métodos , Gelatina , Humanos , Hidrogéis , Nanoestruturas/química , Células Neoplásicas Circulantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA