Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347646

RESUMO

BACKGROUND: The monthly regeneration of human endometrial tissue is maintained by the presence of human endometrial mesenchymal stromal/stem cells (eMSC), a cell population co-expressing the perivascular markers CD140b and CD146. Endometrial regeneration is impaired in the presence of intrauterine adhesions, leading to infertility, recurrent pregnancy loss and placental abnormalities. Several types of somatic stem cells have been used to repair the damaged endometrium in animal models, reporting successful pregnancy. However, the ability of endometrial stem cells to repair the damaged endometrium remains unknown. METHODS: Electrocoagulation was applied to the left uterine horn of NOD/SCID mice causing endometrial injury. Human eMSC or PBS was then injected into the left injured horn while the right normal horn served as controls. Mice were sacrificed at different timepoints (Day 3, 7 and 14) and the endometrial morphological changes as well as the degree of endometrial injury and repair were observed by histological staining. Gene expression of various inflammatory markers was assessed using qPCR. The functionality of the repaired endometrium was evaluated by fertility test. RESULTS: Human eMSC successfully incorporated into the injured uterine horn, which displayed significant morphological restoration. Also, endometrium in the eMSC group showed better cell proliferation and glands formation than the PBS group. Although the number of blood vessels were similar between the two groups, gene expression of VEGF-α significantly increased in the eMSC group. Moreover, eMSC had a positive impact on the regeneration of both stromal and epithelial components of the mouse endometrium, indicated by significantly higher vimentin and CK19 protein expression. Reduced endometrial fibrosis and down-regulation of fibrosis markers were also observed in the eMSC group. The eMSC group had a significantly higher gene expression of anti-inflammatory factor Il-10 and lower mRNA level of pro-inflammatory factors Ifng and Il-2, indicating the role of eMSC in regulation of inflammatory reactions. The eMSC group showed higher implantation sites than the PBS group, suggesting better endometrial receptivity with the presence of newly emerged endometrial lining. CONCLUSIONS: Our findings suggest eMSC improves regeneration of injured endometrium in mice.


Assuntos
Células-Tronco Mesenquimais , Doenças Uterinas , Camundongos , Feminino , Humanos , Gravidez , Animais , Camundongos Endogâmicos NOD , Camundongos SCID , Placenta/patologia , Endométrio/metabolismo , Endométrio/patologia , Doenças Uterinas/terapia , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Fibrose
2.
J Magn Reson Imaging ; 57(6): 1713-1725, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36219521

RESUMO

BACKGROUND: High radiation doses of stereotactic radiosurgery (SRS) for brain metastases (BM) can increase the likelihood of radiation necrosis (RN). Advanced MRI sequences can improve the differentiation between RN and tumor progression (TP). PURPOSE: To use saturation transfer MRI methods including chemical exchange saturation transfer (CEST) and magnetization transfer (MT) to distinguish RN from TP. STUDY TYPE: Prospective cohort study. SUBJECTS: Seventy patients (median age 60; 73% females) with BM (75 lesions) post-SRS. FIELD STRENGTH/SEQUENCE: 3-T, CEST imaging using low/high-power (saturation B1  = 0.52 and 2.0 µT), quantitative MT imaging using B1  = 1.5, 3.0, and 5.0 µT, WAter Saturation Shift Referencing (WASSR), WAter Shift And B1 (WASABI), T1 , and T2 mapping. All used gradient echoes except T2 mapping (gradient and spin echo). ASSESSMENT: Voxel-wise metrics included: magnetization transfer ratio (MTR); apparent exchange-dependent relaxation (AREX); MTR asymmetry; normalized MT exchange rate and pool size product; direct water saturation peak width; and the observed T1 and T2 . Regions of interests (ROIs) were manually contoured on the post-Gd T1 w. The mean (of median ROI values) was compared between groups. Clinical outcomes were determined by clinical and radiologic follow-up or histopathology. STATISTICAL TESTS: t-Test, univariable and multivariable logistic regression, receiver operating characteristic, and area under the curve (AUC) with sensitivity/specificity values with the optimal cut point using the Youden index, Akaike information criterion (AIC), Cohen's d. P < 0.05 with Bonferroni correction was considered significant. RESULTS: Seven metrics showed significant differences between RN and TP. The high-power MTR showed the highest AUC of 0.88, followed by low-power MTR (AUC = 0.87). The combination of low-power CEST scans improved the separation compared to individual parameters (with an AIC of 70.3 for low-power MTR/AREX). Cohen's d effect size showed that the MTR provided the largest effect sizes among all metrics. DATA CONCLUSION: Significant differences between RN and TP were observed based on saturation transfer MRI. EVIDENCE LEVEL: 3 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Lesões por Radiação/diagnóstico por imagem , Água , Necrose , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
Reprod Biol Endocrinol ; 20(1): 120, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964080

RESUMO

During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.


Assuntos
Implantação do Embrião , Trofoblastos , Blastocisto , Implantação do Embrião/fisiologia , Embrião de Mamíferos , Endométrio , Feminino , Humanos , Gravidez , Trofoblastos/fisiologia
4.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563003

RESUMO

Human endometrium is an incredibly dynamic tissue undergoing cyclic regeneration and shedding during a woman's reproductive life. Endometrial mesenchymal stromal/stem-like cells (eMSC) contribute to this process. A hypoxic niche with low oxygen levels has been reported in multiple somatic stem cell types. However, the knowledge of hypoxia on eMSC remains limited. In mice, stromal stem/progenitor cells can be identified by the label-retaining technique. We examined the relationship between the label-retaining stromal cells (LRSC) and hypoxia during tissue breakdown in a mouse model of simulated menses. Our results demonstrated that LRSC resided in a hypoxic microenvironment during endometrial breakdown and early repair. Immunofluorescence staining revealed that the hypoxic-located LRSC underwent proliferation and was highly colocalized with Notch1. In vitro studies illustrated that hypoxia activated Notch signaling in eMSC, leading to enhanced self-renewal, clonogenicity and proliferation of cells. More importantly, HIF-1α played an essential role in the hypoxia-mediated maintenance of eMSC through the activation of Notch signaling. In conclusion, our findings show that some endometrial stem/progenitor cells reside in a hypoxic niche during menstruation, and hypoxia can regulate the self-renewal activity of eMSC via Notch signaling.


Assuntos
Hipóxia Celular , Endométrio , Células-Tronco Mesenquimais , Animais , Hipóxia Celular/fisiologia , Endométrio/metabolismo , Feminino , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
5.
NMR Biomed ; 34(12): e4599, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34405471

RESUMO

Elevated production of lactate is a key characteristic of aberrant tumour cell metabolism and can be non-invasively measured as an early marker of tumour response using deuterium (2 H) MRS. Following treatment, changes in the 2 H-labelled lactate signal could identify tumour cell death or impaired metabolic function, which precede morphological changes conventionally used to assess tumour response. In this work, the association between apoptotic cell death, extracellular lactate concentration, and early treatment-induced changes in the 2 H-labelled lactate signal was established in an in vitro tumour model. Experiments were conducted at 7 T on acute myeloid leukaemia (AML) cells, which had been treated with 10 µg/mL of the chemotherapeutic agent cisplatin. At 24 and 48 h after cisplatin treatment the cells were supplied with 20 mM of [6,6'-2 H2 ]glucose and scanned over 2 h using a two-dimensional 2 H MR spectroscopic imaging sequence. The resulting signals from 2 H-labelled glucose, lactate, and water were quantified using a spectral fitting algorithm implemented on the Oxford Spectroscopy Analysis MATLAB toolbox. After scanning, the cells were processed for histological stains (terminal deoxynucleotidyl transferase UTP nick end labelling and haematoxylin and eosin) to assess apoptotic area fraction and cell morphology respectively, while a colorimetric assay was used to measure extracellular lactate concentrations in the supernatant. Significantly lower levels of 2 H-labelled lactate were observed in the 48 h treated cells compared with the untreated and 24 h treated cells, and these changes were significantly correlated with an increase in apoptotic fraction and a decrease in extracellular lactate. By establishing the biological processes associated with treatment-induced changes in the 2 H-labelled lactate signal, these findings suggest that 2 H MRS of lactate may be valuable in evaluating early tumour response.


Assuntos
Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Deutério , Glucose/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico
6.
J Neurooncol ; 151(2): 267-278, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33196965

RESUMO

PURPOSE: Quantitative MRI (qMRI) was performed using a 1.5T protocol that includes a novel chemical exchange saturation transfer/magnetization transfer (CEST/MT) approach. The purpose of this prospective study was to determine if qMRI metrics at baseline, at the 10th and 20th fraction during a 30 fraction/6 week standard chemoradiation (CRT) schedule, and at 1 month following treatment could be an early indicator of response for glioblastoma (GBM). METHODS: The study included 51 newly diagnosed GBM patients. Four regions-of-interest (ROI) were analyzed: (i) the radiation defined clinical target volume (CTV), (ii) radiation defined gross tumor volume (GTV), (iii) enhancing-tumor regions, and (iv) FLAIR-hyperintense regions. Quantitative CEST, MT, T1 and T2 parameters were compared between those patients progressing within 6.9 months (early), and those progressing after CRT (late), using mixed modelling. Exploratory predictive modelling was performed to identify significant predictors of early progression using a multivariable LASSO model. RESULTS: Results were dependent on the specific tumor ROI analyzed and the imaging time point. The baseline CEST asymmetry within the CTV was significantly higher in the early progression cohort. Other significant predictors included the T2 of the MT pools (for semi-solid at fraction 20 and water at 1 month after CRT), the exchange rate (at fraction 20) and the MGMT methylation status. CONCLUSIONS: We observe the potential for multiparametric qMRI, including a novel pulsed CEST/MT approach, to show potential in distinguishing early from late progression GBM cohorts. Ultimately, the goal is to personalize therapeutic decisions and treatment adaptation based on non-invasive imaging-based biomarkers.


Assuntos
Neoplasias Encefálicas/patologia , Quimiorradioterapia/métodos , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias Encefálicas/terapia , Feminino , Seguimentos , Glioblastoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Curva ROC , Adulto Jovem
7.
Stem Cells ; 37(11): 1455-1466, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414525

RESUMO

Human endometrium undergoes cycles of proliferation and differentiation throughout the reproductive years of women. The endometrial stem/progenitor cells contribute to this regenerative process. They lie in the basalis layer of the endometrium next to the myometrium. We hypothesized that human myometrial cells provide niche signals regulating the activities of endometrial mesenchymal stem-like cells (eMSCs). In vitro coculture of myometrial cells enhanced the colony-forming and self-renewal ability of eMSCs. The cocultured eMSCs retained their multipotent characteristic and exhibited a greater total cell output when compared with medium alone culture. The expression of active ß-catenin in eMSCs increased significantly after coculture with myometrial cells, suggesting activation of WNT/ß-catenin signaling. Secretory factors in spent medium from myometrial cell culture produced the same stimulatory effects on eMSCs. The involvement of WNT/ß-catenin signaling in self-renewal of eMSCs was confirmed with the use of WNT activator (Wnt3A conditioned medium) and WNT inhibitors (XAV939 and inhibitor of Wnt Production-2 [IWP-2]). The myometrial cells expressed more WNT5A than other WNT ligands. Recombinant WNT5A stimulated whereas anti-WNT5A antibody suppressed the colony formation, self-renewal, and T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcriptional activities of eMSCs. Moreover, eMSCs expressed FZD4 and LRP5. WNT5A is known to activate the canonical WNT signaling in the presence of these receptor components. WNT antagonist, DKK1, binds to LRP5/6. Consistently, DKK1 treatment nullified the stimulatory effect of myometrial cell coculture. In conclusion, our findings show that the myometrial cells are niche components of eMSCs, modulating the self-renewal activity of eMSCs by WNT5A-dependent activation of WNT/ß-catenin signaling. Stem Cells 2019;37:1455-1466.


Assuntos
Cateninas/metabolismo , Endométrio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miométrio/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Adulto , Cateninas/genética , Células Cultivadas , Endométrio/citologia , Endométrio/efeitos dos fármacos , Feminino , Citometria de Fluxo , Imunofluorescência , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Inativação Gênica/fisiologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Miométrio/citologia , Miométrio/efeitos dos fármacos , Proteínas Wnt/genética , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína Wnt-5a/genética
8.
Magn Reson Med ; 82(5): 1684-1699, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31228291

RESUMO

PURPOSE: To compare magnetization transfer (MT) and CEST effects between 1.5T and 3T in phantom and in vivo experiments. METHODS: A pulsed saturation scheme using block-shaped pulses separated by gaps was used to overcome the single RF amplifier duty cycle limitations of a clinical 1.5T scanner. Modeling was performed by incorporating the extended phase graph formalism into a Bloch-McConnell simulation. Two saturation pulse types (with long and short pulses) were used. Estimated parameters for MT (the semi-solid pool fraction, M0B ; the semi-solid transverse relaxation time, T2B ) and CEST (asymmetry; areas) were compared between 1.5T and 3T in phantoms and in the healthy brain. RESULTS: Improved fits were shown after inclusion of extended phase graphs. Semi-solid pool fractions in phantom (for agar with ammonium chloride) were higher for short compared to long pulses at 3T (by 19% over all concentrations) and higher at 1.5T compared to 3T (by 5%) using short pulses. In the in vivo experiments, differentiation of white and gray matter was seen in the brain at both field strengths with improved white-gray matter contrast at 3T. In white matter, the mean semi-solid fractions were 18 ± 2% at 3T and 15 ± 2% at 1.5T. The CEST asymmetry in white matter was negative (-4.9 ± 0.4%) at 3T and zero (0.0 ± 0.3%) at 1.5T. CONCLUSIONS: The pulsed saturation method with short pulses, using the extended phase graph formalism in the Bloch McConnell simulations, led to improved model fits to the data, when compared to those without extended phase graphs.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
9.
Magn Reson Med ; 81(1): 466-476, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30058296

RESUMO

PURPOSE: Prostate cancer can be detected using a multicomponent T2 mapping technique termed luminal water imaging. The purpose of this study is twofold: 1) To accelerate the luminal water imaging acquisition by using inner volume selection as part of a gradient and spin echo sequence, and 2) to evaluate the accuracy of luminal water fractions and multicomponent T2 relaxation times. METHODS: The accuracy of parameter estimates was assessed using Monte Carlo simulations, in phantom experiments and in the prostate (in 5 healthy subjects). Two fitting methods, nonnegative least squares and biexponential fitting with stimulated echo correction, were compared. RESULTS: Results demonstrate that inner volume selection in a gradient and spin echo sequence is effective for accelerating prostate luminal water imaging by at least threefold. Evaluation of the accuracy shows that the estimated luminal water fractions are relatively accurate, but the short- and long-T2 relaxation times should be interpreted with caution in noisy scenarios (SNR < 100) and when the corresponding fractions are small ( < 0.5). The mean luminal water fractions obtained at SNR above 100 are 0.27 ± 0.07 for the peripheral zone for both fitting methods, 0.16 ± 0.04 for the transition zone with nonnegative least squares, and 0.16 ± 0.03 for the transition zone with biexponential fitting including stimulated echo correction. CONCLUSION: The shortened scan duration allows the luminal water imaging sequence to be easily integrated into a standard multiparametric prostate MRI protocol.


Assuntos
Imageamento por Ressonância Magnética , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Algoritmos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Imagens de Fantasmas , Hiperplasia Prostática/diagnóstico por imagem , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Água/química
10.
Exp Cell Res ; 350(1): 184-189, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890645

RESUMO

The human endometrium is a highly dynamic tissue with the ability to cyclically regenerate during the reproductive life. Endometrial mesenchymal stem-like cells (eMSCs) located throughout the endometrium have shown to functionally contribute to endometrial regeneration. In this study we examine whether the menstrual cycle stage and the location in the endometrial bilayer (superficial and deep portions of the endometrium) has an effect on stem cell activities of eMSCs (CD140b+CD146+ cells). Here we show the percentage and clonogenic ability of eMSCs were constant in the various stages of the menstrual cycle (menstrual, proliferative and secretory). However, eMSCs from the menstrual endometrium underwent significantly more rounds of self-renewal and enabled a greater total cell output than those from the secretory phase. Significantly more eMSCs were detected in the deeper portion of the endometrium compared to the superficial layer but their clonogenic and self-renewal activities remained similar. Our findings suggest that eMSCs are activated in the menstrual phase for the cyclical regeneration of the endometrium.


Assuntos
Endométrio/citologia , Ciclo Menstrual/metabolismo , Células-Tronco Mesenquimais/citologia , Diferenciação Celular , Endométrio/ultraestrutura , Feminino , Humanos , Regeneração
11.
Magn Reson Med ; 75(6): 2517-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26193125

RESUMO

PURPOSE: Brief bursts of RF noise during MR data acquisition ("k-space spikes") cause disruptive image artifacts, manifesting as stripes overlaid on the image. RF noise is often related to hardware problems, including vibrations during gradient-heavy sequences, such as diffusion-weighted imaging. In this study, we present an application of the Robust Principal Component Analysis (RPCA) algorithm to remove spike noise from k-space. METHODS: Corrupted k-space matrices were decomposed into their low-rank and sparse components using the RPCA algorithm, such that spikes were contained within the sparse component and artifact-free k-space data remained in the low-rank component. Automated center refilling was applied to keep the peaked central cluster of k-space from misclassification in the sparse component. RESULTS: This algorithm was demonstrated to effectively remove k-space spikes from four data types under conditions generating spikes: (i) mouse heart T1 mapping, (ii) mouse heart cine imaging, (iii) human kidney diffusion tensor imaging (DTI) data, and (iv) human brain DTI data. Myocardial T1 values changed by 86.1 ± 171 ms following despiking, and fractional anisotropy values were recovered following despiking of DTI data. CONCLUSION: The RPCA despiking algorithm will be a valuable postprocessing method for retrospectively removing stripe artifacts without affecting the underlying signal of interest. Magn Reson Med 75:2517-2525, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Animais , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Rim/diagnóstico por imagem , Camundongos , Análise de Componente Principal , Processamento de Sinais Assistido por Computador
12.
NMR Biomed ; 27(11): 1300-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25219683

RESUMO

Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm(2) and 1.2 × 1.2 mm(2) , respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function.


Assuntos
Imagem de Tensor de Difusão/métodos , Rim/anatomia & histologia , Adulto , Anisotropia , Artefatos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Córtex Renal/anatomia & histologia , Medula Renal/anatomia & histologia , Masculino , Movimento (Física) , Valores de Referência , Reprodutibilidade dos Testes , Respiração , Adulto Jovem
13.
Front Immunol ; 15: 1378863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765018

RESUMO

Background: At menstruation, the functional layer of the human endometrium sheds off due to the trigger of the release of inflammatory factors, including interleukin 6 (IL-6), as a result of a sharp decline in progesterone levels, leading to tissue breakdown and bleeding. The endometrial mesenchymal stem-like cells (CD140b+CD146+ eMSC) located in the basalis are responsible for the cyclical regeneration of the endometrium after menstruation. Endometrial cells from the menstruation phase have been proven to secrete a higher amount of IL-6 and further enhance the self-renewal and clonogenic activity of eMSC. However, the IL-6-responsive mechanism remains unknown. Thus, we hypothesized that IL-6 secreted from niche cells during menstruation regulates the proliferation and self-renewal of eMSC through the WNT/ß-catenin signaling pathway. Methods: In this study, the content of IL-6 across the menstrual phases was first evaluated. Coexpression of stem cell markers (CD140b and CD146) with interleukin 6 receptor (IL-6R) was confirmed by immunofluorescent staining. In vitro functional assays were conducted to investigate the effect of IL-6 on the cell activities of eMSC, and the therapeutic role of these IL-6- and WNT5A-pretreated eMSC on the repair of injured endometrium was observed using an established mouse model. Results: The endometrial cells secrete a high amount of IL-6 under hypoxic conditions, which mimic the physiological microenvironment in the menstruation phase. Also, the expression of IL-6 receptors was confirmed in our eMSC, indicating their capacity to respond to IL-6 in the microenvironment. Exogenous IL-6 can significantly enhance the self-renewal, proliferation, and migrating capacity of eMSC. Activation of the WNT/ß-catenin signaling pathway was observed upon IL-6 treatment, while suppression of the WNT/ß-catenin signaling impaired the stimulatory role of IL-6 on eMSC activities. IL-6- and WNT5A-pretreated eMSC showed better performance during the regeneration of the injured mouse endometrium. Conclusion: We demonstrate that the high level of IL-6 produced by endometrial cells at menstruation can induce the stem cells in the human endometrium to proliferate and migrate through the activation of the WNT/ß-catenin pathway. Treatment of eMSC with IL-6 and WNT5A might enhance their therapeutic potential in the regeneration of injured endometrium.


Assuntos
Proliferação de Células , Endométrio , Interleucina-6 , Menstruação , Células-Tronco Mesenquimais , Via de Sinalização Wnt , Feminino , Células-Tronco Mesenquimais/metabolismo , Humanos , Interleucina-6/metabolismo , Endométrio/metabolismo , Endométrio/citologia , Animais , Camundongos , Adulto , Células Cultivadas , Autorrenovação Celular
14.
Neuro Oncol ; 26(12 Suppl 2): S3-S16, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437669

RESUMO

Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.


Assuntos
Glioblastoma , Neurologia , Radioterapia (Especialidade) , Humanos , Glioblastoma/radioterapia , Quimiorradioterapia
15.
Technol Cancer Res Treat ; 22: 15330338231208613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37872686

RESUMO

Chemical exchange saturation transfer (CEST) is a relatively novel magnetic resonance imaging (MRI) technique with an image contrast designed for in vivo measurement of certain endogenous molecules with protons that are exchangeable with water protons, such as amide proton transfer commonly used for neuro-oncology applications. Recent technological advances have made it feasible to implement CEST on clinical grade scanners within practical acquisition times, creating new opportunities to integrate CEST in clinical workflow. In addition, the majority of CEST applications used in neuro-oncology are performed without the use gadolinium-based contrast agents which are another appealing feature of this technique. This review is written for clinicians involved in neuro-oncologic care (nonphysicists) as the target audience explaining what they need to know as CEST makes its way into practice. The purpose of this article is to (1) review the basic physics and technical principles of CEST MRI, and (2) review the practical applications of CEST in neuro-oncology.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos
16.
Radiother Oncol ; 188: 109873, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640160

RESUMO

BACKGROUND AND PURPOSE: Survival in glioblastoma might be extended by escalating the radiotherapy dose to treatment-resistant tumour and adapting to tumour changes. Diffusion-weighted imaging (DWI) on MRI-linear accelerators (MR-Linacs) could be used to identify a dose escalation target, but its prognostic value must be demonstrated. The purpose of this study was to determine whether MR-Linac DWI can assess treatment response in glioblastoma and whether changes in DWI show greater prognostic value than changes in the contrast-enhancing gross tumour volume (GTV). MATERIALS AND METHODS: Seventy-five patients with glioblastoma were treated with chemoradiotherapy, of which 32 were treated on a 1.5 T MRI-linear accelerator (MR-Linac). Patients were imaged with simulation MRI scanners (MR-sim) at treatment planning and weeks 2, 4, and 10 after treatment start. Twenty-eight patients had additional MR-Linac DWI sequences. Cox modelling was used to evaluate the correlation of overall and progression-free survival (OS and PFS) with clinical variables and volumetric changes in the GTV and low-ADC regions (ADC < 1.25 µm2/ms within GTV). RESULTS: In total, 479 MR-Linac DWI and 289 MR-sim DWI datasets were analyzed. MR-Linac low-ADC changes between weeks 2 and 5 inclusive were prognostic for OS (hazard ratio lower limits ≥ 1.2, p-values ≤ 0.02). MR-sim low-ADC changes showed greater correlation with OS and PFS than GTV changes (e.g., OS hazard ratio at week 2 was 3.4 (p <0.001) for low-ADC versus 2.0 (p = 0.022) for GTV). CONCLUSION: MR-Linac DWI can measure low-ADC tumour volumes that correlate with OS and PFS better than contrast-enhancing GTV. Low-ADC regions could serve as dose escalation targets.

17.
Magn Reson Med ; 67(2): 363-77, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21656558

RESUMO

Fast imaging applications in magnetic resonance imaging (MRI) frequently involve undersampling of k-space data to achieve the desired temporal resolution. However, high temporal resolution images generated from undersampled data suffer from aliasing artifacts. In radial k-space sampling, this manifests as undesirable streaks that obscure image detail. Compressed sensing reconstruction has been shown to reduce such streak artifacts, based on the assumption of image sparsity. Here, compressed sensing is implemented with three different radial sampling schemes (golden-angle, bit-reversed, and random sampling), which are compared over a range of spatiotemporal resolutions. The sampling methods are implemented in static scenarios where different undersampling patterns could be compared. Results from point spread function studies, simulations, phantom and in vivo experiments show that the choice of radial sampling pattern influences the quality of the final image reconstructed by the compressed sensing algorithm. While evenly undersampled radial trajectories are best for specific temporal resolutions, golden-angle radial sampling results in the least overall error when various temporal resolutions are considered. Reduced temporal fluctuations from aliasing artifacts in golden-angle sampling translates to improved compressed sensing reconstructions overall.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Mamografia/métodos , Design de Software , Artefatos , Simulação por Computador , Feminino , Análise de Fourier , Humanos , Imagens de Fantasmas , Sensibilidade e Especificidade
18.
Commun Biol ; 5(1): 1064, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207605

RESUMO

Human endometrium undergoes cycles of regeneration in women of reproductive age. The endometrial mesenchymal stromal/stem cells (eMSC) contribute to this process. Notch signaling is essential for homeostasis of somatic stem cells. However, its role in eMSC remains unclear. We show with gain- and loss-of-function experiments that activation of Notch signaling promotes eMSC maintenance, while inhibition induces opposite effect. The activation of Notch signaling better maintains eMSC in a quiescent state. However, these quiescent eMSC can re-enter the cell cycle depending on the Notch and Wnt activities in the microenvironment, suggesting a crosstalk between the two signaling pathways. We further show that the Notch signaling is involved in endometrial remodeling event in a mouse menstrual-like model. Suppression of Notch signaling reduces the proliferation of Notch1+ label-retaining stromal cells and delays endometrial repair. Our data demonstrate the importance of Notch signaling in regulating the endometrial stem/progenitor cells in vitro and in vivo.


Assuntos
Endométrio , Células-Tronco Mesenquimais , Animais , Endométrio/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais , Células-Tronco , Células Estromais
19.
Front Cell Dev Biol ; 10: 837827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295855

RESUMO

Endometrial mesenchymal stem-like cells (eMSC) reside in the basal layer of the endometrium and are responsible for cyclic regeneration during the reproductive lives of women. Myometrial cells act as a component of the niche and regulate the stem cell fate through the activation of WNT/ß-catenin signaling via WNT5A. Since WNT5A-responsive mechanisms on eMSC are still uncertain, we hypothesize that the WNT ligand-WNT5A works to activate WNT/ß-catenin signaling through binding to Frizzled receptors (FZDs) and co-receptor low-density lipoprotein receptor-related protein 5 (LRP5). Among the various receptors that have been reported to interact with WNT5A, we found FZD5 abundantly expressed by eMSC when compared to unfractionated stromal cells. Neutralizing the protein expression by using anti-FZD5 antibody suppressed the stimulatory effects on phenotypic expression and the clonogenicity of eMSC in a myometrial cell-eMSC co-culture system as well as in an L-Wnt5a conditioned medium. Gene silencing of FZD5 not only reduced the binding of WNT5A to eMSC but also decreased the TCF/LEF transcriptional activities and expression of active ß-catenin. Inhibition of LRP coreceptors with recombinant Dickkopf-1 protein significantly reduced the binding affinity of eMSC to WNT5A as well as the proliferation and self-renewal activity. During postpartum remodeling in mouse endometrium, active ß-catenin (ABC) was detected in label-retaining stromal cells (LRSCs), and these ABC+ LRSCs express FZD5 and LRP5, suggesting the activation of WNT/ß-catenin signaling. In conclusion, our findings demonstrate the interaction of WNT5A, FZD5, and LRP5 in regulating the proliferation and self-renewal of eMSC through WNT/ß-catenin signaling.

20.
Front Cell Dev Biol ; 10: 1060298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561369

RESUMO

The placenta is important for fetal development in mammals, and spatial transcriptomic profiling of placenta helps to resolve its structure and function. In this study, we described the landscape of spatial transcriptome of human placental villi obtained from two pregnant women at the first trimester using the modified Stereo-seq method applied for paraformaldehyde (PFA) fixation samples. The PFA fixation of human placenta villi was better than fresh villi embedded in optimum cutting temperature (OCT) compound, since it greatly improved tissue morphology and the specificity of RNA signals. The main cell types in chorionic villi such as syncytiotrophoblasts (SCT), villous cytotrophoblasts (VCT), fibroblasts (FB), and extravillous trophoblasts (EVT) were identified with the spatial transcriptome data, whereas the minor cell types of Hofbauer cells (HB) and endothelial cells (Endo) were spatially located by deconvolution of scRNA-seq data. We demonstrated that the Stereo-seq data of human villi could be used for sophisticated analyses such as spatial cell-communication and regulatory activity. We found that the SCT and VCT exhibited the most ligand-receptor pairs that could increase differentiation of the SCT, and that the spatial localization of specific regulons in different cell types was associated with the pathways related to hormones transport and secretion, regulation of mitotic cell cycle, and nutrient transport pathway in SCT. In EVT, regulatory pathways such as the epithelial to mesenchyme transition, epithelial development and differentiation, and extracellular matrix organization were identified. Finally, viral receptors and drug transporters were identified in villi according to the pathway analysis, which could help to explain the vertical transmission of several infectious diseases and drug metabolism efficacy. Our study provides a valuable resource for further investigation of the placenta development, physiology and pathology in a spatial context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA