Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(31): 15362-15367, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31315977

RESUMO

Collective motion is found in various animal systems, active suspensions, and robotic or virtual agents. This is often understood by using high-level models that directly encode selected empirical features, such as coalignment and cohesion. Can these features be shown to emerge from an underlying, low-level principle? We find that they emerge naturally under future state maximization (FSM). Here, agents perceive a visual representation of the world around them, such as might be recorded on a simple retina, and then move to maximize the number of different visual environments that they expect to be able to access in the future. Such a control principle may confer evolutionary fitness in an uncertain world by enabling agents to deal with a wide variety of future scenarios. The collective dynamics that spontaneously emerge under FSM resemble animal systems in several qualitative aspects, including cohesion, coalignment, and collision suppression, none of which are explicitly encoded in the model. A multilayered neural network trained on simulated trajectories is shown to represent a heuristic mimicking FSM. Similar levels of reasoning would seem to be accessible under animal cognition, demonstrating a possible route to the emergence of collective motion in social animals directly from the control principle underlying FSM. Such models may also be good candidates for encoding into possible future realizations of artificial "intelligent" matter, able to sense light, process information, and move.


Assuntos
Movimento (Física) , Motivação , Algoritmos , Modelos Teóricos , Redes Neurais de Computação
2.
Artigo em Inglês | MEDLINE | ID: mdl-26565169

RESUMO

We compute statistical properties of the stochastic entropy production associated with the nonstationary transport of heat through a system coupled to a time dependent nonisothermal heat bath. We study the one-dimensional stochastic evolution of a bound particle in such an environment by solving the appropriate Langevin equation numerically, and by using an approximate analytic solution to the Kramers equation to determine the behavior of an ensemble of systems. We express the total stochastic entropy production in terms of a relaxational or nonadiabatic part together with two components of housekeeping entropy production and determine the distributions for each, demonstrating the importance of all three contributions for this system. We compare the results with an approximate analytic model of the mean behavior and we further demonstrate that the total entropy production and the relaxational component approximately satisfy detailed fluctuation relations for certain time intervals. Finally, we comment on the resemblance between the procedure for solving the Kramers equation and a constrained extremization, with respect to the probability density function, of the spatial density of the mean rate of production of stochastic entropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA