Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 33(5): 793-806, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24381099

RESUMO

KEY MESSAGE: Critical regions within the rice metallothionein OsMT2b gene promoter are identified and the 5'-untranslated region (5'-UTR) is found essential for the high-level promoter activity in germinated transgenic rice embryos. Many metallothionein (MT) genes are highly expressed in plant tissues. A rice subfamily p2 (type 2) MT gene, OsMT2b, has been shown previously to exhibit the most abundant gene expression in young rice seedling. In the present study, transient expression assays and a transgenic approach were employed to characterize the expression of the OsMT2b gene in rice. We found that the OsMT2b gene is strongly and differentially expressed in germinated rice embryos during seed germination and seedling development. Histochemical staining analysis of transgenic rice carrying OsMT2b::GUS chimeric gene showed that high-level GUS activity was detected in germinated embryos and at the meristematic part of other tissues during germination. Deletion analysis of the OsMT2b promoter revealed that the 5'-flanking region of the OsMT2b between nucleotides -351 and -121 relative to the transcriptional initiation site is important for promoter activity in rice embryos, and this region contains the consensus sequences of G box and TA box. Our study demonstrates that the 5'-untranslated region (5'-UTR) of OsMT2b gene is not only necessary for the OsMT2b promoter activity, but also sufficient to augment the activity of a minimal promoter in both transformed cell cultures and germinated transgenic embryos in rice. We also found that addition of the maize Ubi intron 1 significantly enhanced the OsMT2b promoter activity in rice embryos. Our studies reveal that OsMT2b351-ubi(In) promoter can be applied in plant transformation and represents potential for driving high-level production of foreign proteins in transgenic rice.


Assuntos
Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica de Plantas , Metalotioneína/genética , Oryza/genética , Regiões Promotoras Genéticas/genética , Sequência de Bases , Expressão Gênica , Genes Reporter , Germinação , Íntrons/genética , Metalotioneína/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Oryza/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/metabolismo , Ativação Transcricional , Zea mays/genética
2.
Brain Res ; 1649(Pt A): 23-29, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27396909

RESUMO

In this study, we examined whether electroacupuncture (EA) represses pruritogen-induced microglial activation. Immunohistochemical studies revealed that a subcutaneous (s.c.) injection of the pruritogen 5'-guanidinonaltrindole (GNTI; 0.3mg/kg) to the back of the neck in mice induced acute expression of the ionized calcium-binding adaptor molecule 1 (Iba1) in both gray and white matter of the spinal cord, with the highest expression in the dorsal horn area. EA application (2Hz) to LI4 and LI11 attenuated GNTI-induced scratching behavior and repressed GNTI-induced Iba1 expression and Iba1 (+) microglia in the dorsal horn. In contrast, EA at the ST36 acupoint had no such effects. Confocal image analysis revealed co-expression of phosphorylated p38 and Iba1 in microglia with EA at the ST36 acupoint, but not at the LI4 or LI11 acupoints. In Western blot analysis, s.c. injection of GNTI to the back of the neck increased Iba1 and phospho-p38 expression in the spinal cord as compared with injection of saline, while EA at LI4 and LI11 reduced GNTI-induced expression of Iba1 and phospho-p38. These findings indicate that EA at LI4 and LI11, but not at ST36, reduces GNTI-induced microglial activation in the mouse spinal cord.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA