Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(2): 892-899, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33434023

RESUMO

Thermodynamic and kinetic properties of molecular adsorption and transport in metal-organic frameworks (MOFs) are crucially important for many applications, including gas adsorption, filtration, and remediation of harmful chemicals. Using the in situ 1H nuclear magnetic resonance (NMR) isotherm technique, we measured macroscopic thermodynamic and kinetic properties such as isotherms and rates of mass transfer while simultaneously obtaining microscopic information revealed by adsorbed molecules via NMR. Upon investigating isopropyl alcohol adsorption in MOF UiO-66 by in situ NMR, we obtained separate isotherms for molecules adsorbed at distinct environments exhibiting distinct NMR characteristics. A mechanistic view of the adsorption process is obtained by correlating such resolved isotherms with the cage structure effect on the nucleus-independent chemical shift, molecular dynamics such as the crowding effect at high loading levels, and the loading level dependence of the mass transfer rate as measured by NMR and elucidated by classical Monte Carlo simulations.

2.
ACS Appl Mater Interfaces ; 9(2): 1542-1552, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28004907

RESUMO

Owing to their high conductivity, crystalline Li7-3xGaxLa3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7-3xGaxLa3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7-3xGaxLa3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7-3xGaxLa3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7-3xGaxLa3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7-3xGaxLa3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA